摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials are provided. The method involves providing a partially fabricated semiconductor substrate and depositing a tungsten-containing layer on the substrate surface to partially fill one or more high aspect ratio features. The method continues with selective removal of a portion of the deposited layer such that more material is removed near the feature opening than inside the feature. In certain embodiments, removal may be performed at mass-transport limited conditions with less etchant available inside the feature than near its opening. Etchant species are activated before being introduced into the processing chamber and/or while inside the chamber. In specific embodiments, recombination of the activated species is substantially limited and/or controlled during removal, e.g., operation is performed at less than about 250° C. and/or less than about 5 Torr.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a tungsten-containing material followed by selectively removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ration feature. In certain embodiments, the remaining layer is more passivated near the feature opening than inside the feature. The method may proceed with depositing an additional layer of the same or other material over the remaining layer. The deposition rate during this later deposition operation is slower near the feature opening than inside the features due to the differential passivation of the remaining layer. This deposition variation, in turn, may aid in preventing premature closing of the feature and facilitate filling of the feature in a substantially void free manner.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a tungsten-containing material followed by selectively removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ration feature. In certain embodiments, the remaining layer is more passivated near the feature opening than inside the feature. The method may proceed with depositing an additional layer of the same or other material over the remaining layer. The deposition rate during this later deposition operation is slower near the feature opening than inside the features due to the differential passivation of the remaining layer. This deposition variation, in turn, may aid in preventing premature closing of the feature and facilitate filling of the feature in a substantially void free manner.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a tungsten-containing material followed by selectively removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ration feature. In certain embodiments, the remaining layer is more passivated near the feature opening than inside the feature. The method may proceed with depositing an additional layer of the same or other material over the remaining layer. The deposition rate during this later deposition operation is slower near the feature opening than inside the features due to the differential passivation of the remaining layer. This deposition variation, in turn, may aid in preventing premature closing of the feature and facilitate filling of the feature in a substantially void free manner.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a tungsten-containing material followed by selectively removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ration feature. In certain embodiments, the remaining layer is more passivated near the feature opening than inside the feature. The method may proceed with depositing an additional layer of the same or other material over the remaining layer. The deposition rate during this later deposition operation is slower near the feature opening than inside the features due to the differential passivation of the remaining layer. This deposition variation, in turn, may aid in preventing premature closing of the feature and facilitate filling of the feature in a substantially void free manner.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials in a substantially void-free manner are provided. In certain embodiments, the method involves depositing an initial layer of a tungsten-containing material followed by selectively removing a portion of the initial layer to form a remaining layer, which is differentially passivated along the depth of the high-aspect ration feature. In certain embodiments, the remaining layer is more passivated near the feature opening than inside the feature. The method may proceed with depositing an additional layer of the same or other material over the remaining layer. The deposition rate during this later deposition operation is slower near the feature opening than inside the features due to the differential passivation of the remaining layer. This deposition variation, in turn, may aid in preventing premature closing of the feature and facilitate filling of the feature in a substantially void free manner.
摘要:
Methods and apparatuses for filling high aspect ratio features with tungsten-containing materials are provided. The method involves providing a partially fabricated semiconductor substrate and depositing a tungsten-containing layer on the substrate surface to partially fill one or more high aspect ratio features. The method continues with selective removal of a portion of the deposited layer such that more material is removed near the feature opening than inside the feature. In certain embodiments, removal may be performed at mass-transport limited conditions with less etchant available inside the feature than near its opening. Etchant species are activated before being introduced into the processing chamber and/or while inside the chamber. In specific embodiments, recombination of the activated species is substantially limited and/or controlled during removal, e.g., operation is performed at less than about 250° C. and/or less than about 5 Torr.
摘要:
Methods of filling high aspect ratio features provided on partially manufactured semiconductor substrates with tungsten-containing materials are provided. In certain embodiments, the methods include partial filling a high aspect ratio feature with a layer of tungsten-containing materials and selective removal of the partially filled materials from the feature cavity. Substrates processed using these methods have improved step coverage of the tungsten-containing materials filled into the high aspect ratio features and reduced seam sizes.
摘要:
Provided are methods of void-free tungsten fill of high aspect ratio features. According to various embodiments, the methods involve a reduced temperature chemical vapor deposition (CVD) process to fill the features with tungsten. In certain embodiments, the process temperature is maintained at less than about 350° C. during the chemical vapor deposition to fill the feature. The reduced-temperature CVD tungsten fill provides improved tungsten fill in high aspect ratio features, provides improved barriers to fluorine migration into underlying layers, while achieving similar thin film resistivity as standard CVD fill. Also provided are methods of depositing thin tungsten films having low-resistivity. According to various embodiments, the methods involve performing a reduced temperature low resistivity treatment on a deposited nucleation layer prior to depositing a tungsten bulk layer and/or depositing a bulk layer via a reduced temperature CVD process followed by a high temperature CVD process.
摘要:
Methods of filling gaps or recessed features on substrates are provided. According to various embodiments, the methods involve bulk deposition of tungsten to partially fill the feature followed by a removing a top portion of the deposited tungsten. In particular embodiments, the top portion is removed by exposing the substrate to activated fluorine species. By selectively removing sharp and protruding peaks of the deposited tungsten grains, the removal operation polishes the tungsten along the feature sidewall. Multiple deposition-removal cycles can be used to close the feature. The filled feature is less prone to coring during CMP.