摘要:
Methods and systems are provided for characterizing the negative temperature bias instability of a transistor. A bias voltage is maintained at a drain terminal of the transistor during a test period. A stress voltage is maintained at a gate terminal of the transistor during the test period, such that the stress voltage is applied concurrently with the bias voltage. At least one characteristic of the transistor is measured at periodic intervals during the stress period to determine a degradation of the at least one characteristic caused by the stress voltage until a termination event occurs.
摘要:
Methods and systems are provided for characterizing the negative temperature bias instability of a transistor. A bias voltage is maintained at a drain terminal of the transistor during a test period. A stress voltage is maintained at a gate terminal of the transistor during the test period, such that the stress voltage is applied concurrently with the bias voltage. At least one characteristic of the transistor is measured at periodic intervals during the stress period to determine a degradation of the at least one characteristic caused by the stress voltage until a termination event occurs.
摘要:
Methods and systems are provided for characterizing the negative temperature bias instability of a transistor. A bias voltage is maintained at a drain terminal of the transistor during a test period. A stress voltage is maintained at a gate terminal of the transistor during the test period, such that the stress voltage is applied concurrently with the bias voltage. At least one characteristic of the transistor is measured at periodic intervals during the stress period to determine a degradation of the at least one characteristic caused by the stress voltage until a termination event occurs.
摘要:
Methods and systems are provided for characterizing the negative temperature bias instability of a transistor. A bias voltage is maintained at a drain terminal of the transistor during a test period. A stress voltage is maintained at a gate terminal of the transistor during the test period, such that the stress voltage is applied concurrently with the bias voltage. At least one characteristic of the transistor is measured at periodic intervals during the stress period to determine a degradation of the at least one characteristic caused by the stress voltage until a termination event occurs.
摘要:
An embodiment of the invention is an integrated circuit 2 having antenna proximity lines 3 coupled to the semiconductor substrate 5. Another embodiment of the invention is a method of manufacturing an integrated circuit 2 having antenna proximity lines 3 coupled to the semiconductor substrate 5.
摘要:
According to one embodiment of the invention, a silicon-on-insulator device includes an insulative layer formed overlying a substrate and a source and drain region formed overlying the insulative layer. The source region and the drain region comprise a material having a first conductivity type. A body region is disposed between the source region and the drain region and overlying the insulative layer. The body region comprises a material having a second conductivity type. A gate insulative layer overlies the body region. This device also includes a gate region overlying the gate insulative layer. The device also includes a diode circuit conductively coupled to the source region and a conductive connection coupling the gate region to the diode circuit.
摘要:
A semiconductor device (200) that includes a semiconductor substrate (210), semiconductor features (230, 235, 240, 260) located thereover and an insulating photoconductive layer (270) coupling the semiconductor features (230, 235, 240, 260). The photoconductive layer (270) is configured to provide conductivity between the semiconductor features (230, 235, 240, 260) in a presence of a plasma.
摘要:
Various apparatuses and methods for varying segment activation in a segmented power amplifier are disclosed herein. For example, some embodiments provide a power amplifier including an input, an output, a plurality of amplifier segments and a controller. The amplifier segments are connected in parallel between the input and the output and are adapted to be activated and inactivated. The power level at the output may be controlled by changing a number of the amplifier segments that are activated concurrently. The controller is connected to the amplifier segments and is adapted to vary which of the amplifier segments are activated to arrive at a selected number of activated amplifier segments.
摘要:
An integrated circuit (IC) includes at least a first complementary MOS (CMOS) circuit, the first CMOS circuit comprising one or more first n-channel MOS (NMOS) transistors and one or more first p-channel MOS (PMOS) transistors, where the first NMOS transistors and the first PMOS transistors are arranged in the first CMOS circuit to drive at least a first common node of the first CMOS circuit. An average of the effective gate channel lengths of the first NMOS transistors (first NMOS average length) is at least 2% greater than an average of the effective gate channel lengths of the first PMOS transistors (first PMOS average length).
摘要:
An embodiment of the instant invention is a method of substantially isolating an electrical device over a semiconductor substrate from a structure which collects charge, the method comprising the steps of: forming an insulating layer (layer 304) on the substrate; forming a conductive layer (layer 306) on the insulating layer; incorporating at least one element (element 310) into portions of the conductive layer so as to render that portion the conductive layer more resistive; and wherein the portion of the conductive layer which has been rendered more resistive (region 312) is rendered conductive after one or more charging events by subjecting the portion of the conductive layer to an elevated temperature. Preferably, the element is comprised of an element selected from the group comprised of: As, P, N, Ar, Si, H, B, Ge, C, Sb, F, Cl, O, any noble element, and any combination thereof and their isotopes. The structure which collects charge is, preferably, a conductive structure (structure 11) which collects charge during plasma processing.