Abstract:
Methods and apparatus for recovering heat from disposed effluents are disclosed herein. In some embodiments, an apparatus may include a first process chamber configured for gaseous or liquid processes; a second process chamber configured for liquid processes; and a heat pump having a compressor and a first heat exchanger, wherein the compressor is configured to use a first effluent exhausted from the first process chamber and wherein the first heat exchanger having first and second sides configured to transfer heat therebetween, wherein the first side is configured to flow a liquid reagent therethrough and into the second process chamber, and wherein the second side is configured to flow the pressurized first effluent from the first process chamber therethrough. In some embodiments, a heater may be disposed between the heat pump and the second process chamber to further heat the liquid reagent prior to entering the second process chamber.
Abstract:
The present invention generally relates to apparatus and method for recycling both polishing slurry and rinse water from CMP processes. The present invention also relates to rheology measurements and agglomeration prevention using centrifugal pumps.
Abstract:
Methods and apparatus for controlling a processing system are provided herein. In some embodiments, a method of controlling a processing system may include operating a vacuum pump coupled to a process chamber at a first baseline pump idle speed selected to maintain the process chamber at a pressure equal to a first baseline pump idle pressure; monitoring the pressure in the process chamber while operating the vacuum pump at the first baseline pump idle speed; and determining whether the first baseline pump idle pressure can be maintained in the process chamber when the vacuum pump is operating at the first baseline pump idle speed.
Abstract:
A method and system for factory resource optimization identification is described herein. In one embodiment, an expected usage rate is determined for a resource in a manufacturing facility and an actual usage rate is determined for the resource in the manufacturing facility. A comparison between the expected usage rate and the actual usage rate is facilitated. A determination is made, based on the comparison, of whether a variance between the expected usage rate and the actual usage rate exceeds a threshold. A notification is provided if the variance exceeds the threshold.
Abstract:
A resource usage optimization server determines a degradation caused by a first resource. The resource usage optimization server determines a cleaning caused by a second resource. The resource usage optimization server calculates a ratio of the degradation and the cleaning.
Abstract:
A resource usage optimization server determines a degradation caused by a first resource. The resource usage optimization server determines a cleaning caused by a second resource. The resource usage optimization server calculates a ratio of the degradation and the cleaning.