摘要:
Optical fiber coupling unit and optical waveguide arrangement, and method of producing an optical fiber coupling unit. The optical fiber coupling unit 1 has: an optical fiber 2, which has a fiber core 4 and a fiber cladding 6 surrounding the fiber core 4, and a sleeve 8, which is arranged on an end portion of the optical fiber 2 and terminates flush with the associated extreme end 14 of the optical fiber 2, so that on this extreme end 14 there is formed a continuous coupling face 16, with which the optical fiber coupling unit 1 can be placed against an optical waveguide component to establish an optical coupling.
摘要:
The invention relates to an optical chip and to a method for producing an optical chip having a reinforced structure. The chip has a substrate, optical waveguides arranged on the surface of said substrate, and at least one optical structure for influencing the optical properties of the optical waveguides, and an interconnected laminar reinforcing or stiffening structure constructed in the form of a cross which is arranged centrally on the substrate with the provision of diametrically opposite cut-outs.
摘要:
An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces.
摘要:
An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces.
摘要:
The invention is directed to an immersion agent that can be used to couple optical waveguides to optical components. The invention is also directed to the use of an immersion agent, a coupling arrangement and a method for coupling optical waveguides to other optical components; for example, an optical chip.
摘要:
A coupling device for coupling at least one optical waveguide to an optical component having a holding element for holding the at least one optical waveguide, a mounting element for fixing the optical component, and a spacing element. The holding element is fitted to the mounting element. The spacing element is arranged between the holding element and the mounting element, as a result of which the holding element and the mounting element are arranged at a distance from one another.
摘要:
An optical coupling device for injecting light between two optical waveguide end faces, it being possible to vary the geometrical position of one optical waveguide end face with respect to the other optical waveguide end face with the aid of a variable-length element. The element bears one of the two optical waveguides, and is fixed to the other optical waveguide via holding blocks. The variable-length element or the holding device is held by a spring element, which is supported directly or indirectly on at least one of the holding blocks and permits movement of the variable-length element or the holding element in the longitudinal direction of the variable-length element in which the variable-length element extends or shortens, and suppresses movement of the variable-length element perpendicular to the longitudinal direction of the variable-length element, the fiber being held on the other optical waveguide by the spring element close to the fixing of the holding blocks.
摘要:
An optical splitter (100) has an optical conductor track arrangement (LB), which extends from a first side (S1) to a second side (S2) of an optical chip of the optical splitter. The conductor track arrangement (LB) has a plurality of branching nodes (K1) at which in each case a conductor track section (LB1) branches into a plurality of conductor track sections (LB2, LB3). At a branching node (K1), the light power fed in via a first conductor track section (LB1) is distributed non-uniformly between the conductor track sections (LB2, LB3), which are connected downstream and which branch from the branching node (K1). Receiving units (R1) that are at a greater distance from a transmitting unit (T) than other receiving units (R2) are connected to those conductor track sections (LB2) of the optical splitter which have a lower insertion loss on account of the non-uniform ratio of the splitting of the light power.
摘要:
A coupling device for coupling at least one optical waveguide to an optical component having a holding element for holding the at least one optical waveguide, a mounting element for fixing the optical component, and a spacing element. The holding element is fitted to the mounting element. The spacing element is arranged between the holding element and the mounting element, as a result of which the holding element and the mounting element are arranged at a distance from one another.