摘要:
A substrate and a method for fabricating variable quality substrate materials are provided. The method comprises: selecting a first mask having a first mask pattern; projecting a laser beam through the first mask to anneal a first area of semiconductor substrate; creating a first condition in the first area of the semiconductor film; selecting a second mask having a second mask pattern; projecting the laser beam through the second mask to anneal a second area of the semiconductor film; and, creating a second condition in the second area of the semiconductor film, different than the first condition. More specifically, when the substrate material is silicon, the first and second conditions concern the creation of crystalline material with a quantitative measure of lattice mismatch between adjacent crystal domains. For example, the lattice mismatch between adjacent crystal domains can be measured as a number of high-angle grain boundaries per area, where high-angle grain boundaries are defined as boundaries separating adjacent crystal domains with a crystal lattice mismatch angle in the range between 15 and 90 degrees. To continue the example, forming a first number of high-angle grain boundaries per area in the first area may include forming adjacent high-angle grain boundaries separated by a first distance, while forming a second number of high-angle grain boundaries per area in the second area may include forming adjacent high-angle grain boundaries separated by a second distance, greater than the first distance.
摘要:
A system and method are provided for laser irradiating a semiconductor substrate using a multi-pattern mask. The method comprises: exposing a semiconductor substrate to laser light projected through a multi-pattern mask; advancing the mask and substrate in a first direction to sequentially expose adjacent areas of the substrate to each of the mask patterns in a first predetermined order; and, advancing the mask and substrate in a second direction, opposite the first direction, to sequentially expose adjacent areas of the substrate to each of the mask patterns in the first order. In one aspect, the method further comprises: forming a multi-pattern mask having a first plurality patterns aligned in the first order with respect to the first direction and a second plurality of patterns, corresponding to the first plurality of patterns, aligned in the first order with respect to the second direction. Alternately, the method comprises: forming a first multi-pattern mask having a first plurality patterns aligned in the first order with respect to the first direction; and, forming a second multi-pattern mask having a second plurality of patterns, corresponding to the first plurality of patterns, aligned in the first order with respect to the second direction. Then, advancing the mask and substrate in the first direction includes using the first mask, and advancing the mask and substrate in the second direction, opposite the first direction, includes using the second mask.
摘要:
A substrate and a method for fabricating variable quality substrate materials are provided. The method comprises: selecting a first mask having a first mask pattern; projecting a laser beam through the first mask to anneal a first area of semiconductor substrate; creating a first condition in the first area of the semiconductor film; selecting a second mask having a second mask pattern; projecting the laser beam through the second mask to anneal a second area of the semiconductor film; and, creating a second condition in the second area of the semiconductor film, different than the first condition. More specifically, when the substrate material is silicon, the first and second conditions concern the creation of crystalline material with a quantitative measure of lattice mismatch between adjacent crystal domains. For example, the lattice mismatch between adjacent crystal domains can be measured as a number of high-angle grain boundaries per area.
摘要:
Accordingly, a method of suppressing energy spikes is provided comprising projecting a laser beam through a mask having a slit pattern comprising a corner region with edges, and a blocking feature with the corner region to reduce energy spikes projected on a substrate. An alternative method is provided, wherein the corner region is modified such that it is replaced by a more tapered shaped region, preferably a triangle. Also provided, are a variety of mask designs incorporating both corner regions, with and without one or more blocking features, and triangular regions, with or without one or more blocking features. The mask designs provide examples of mask modifications that may be used to reduce energy spikes.
摘要:
Accordingly, a method of suppressing energy spikes is provided comprising projecting a laser beam through a mask having a slit pattern comprising a corner region with edges, and a blocking feature with the corner region to reduce energy spikes projected on a substrate. An alternative method is provided, wherein the corner region is modified such that it is replaced by a more tapered shaped region, preferably a triangle. Also provided, are a variety of mask designs incorporating both corner regions, with and without one or more blocking features, and triangular regions, with or without one or more blocking features. The mask designs provide examples of mask modifications that may be used to reduce energy spikes.