Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Abstract:
An electronic device is disclosed. In some examples, the electronic device includes an input element configured to move in a first direction in response to an input at the input element. The input element can include circuitry configured to perform a first functionality, and process data resulting from the performance of the first functionality and output the processed data from the input element. In some examples, the electronic device includes a processor electrically coupled to the circuitry and configured to process the movement of the input element as an input to the electronic device, and receive the processed data and perform an action based on the processed data.
Abstract:
Aspects of the subject technology relate to a system including a reference device, a measurement device and a processor. The measurement device provides a three-dimensional (3-D) point map corresponding to first positions of a plurality of selected points on a torso of a user. The processor determines a shape of the torso based on the 3-D point map. The measurement device is sequentially placed on the plurality of selected points, and the 3-D point map represents the first positions of the plurality of selected points relative to a second position associated with a location in 3-D space of the reference device.
Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Abstract:
An electronic device is disclosed. In some examples, the electronic device comprises a mechanical input configured to rotate in a first direction about a rotation axis in response to a first input at the mechanical input. In some examples, the electronic device comprises a mechanical input sensor coupled to the mechanical input and configured to sense a rotation of the mechanical input about the rotation axis. In some examples, the electronic device comprises a mechanical input actuator coupled to the mechanical input and configured to rotate the mechanical input in a second direction about the rotation axis. In some examples, the mechanical input comprises a shared driving and sensing segment. In some examples, the mechanical input sensor is configured to sense the rotation of the mechanical input at the shared driving and sensing segment. In some examples, the mechanical input actuator is configured to generate magnetic fields for rotating the mechanical input at the shared driving and sensing segment. In some examples, the mechanical input is further configured to translate along the rotation axis in response to a second input. In some examples, the mechanical input actuator comprises at least one piezoelectric element configured to allow the mechanical input to translate along the rotation axis. In some examples, the mechanical input actuator comprises at least one piezoelectric element configured to rotate the mechanical input in the second direction about the rotation axis.
Abstract:
An electronic device is disclosed. In some examples, the electronic device comprises a rotatable mechanical input mechanism. In some examples, the electronic device comprises sense electrode positioned proximate to the mechanical input mechanism. In some examples, the electronic device comprises a capacitive sense circuit comprising drive circuity operatively coupled to the mechanical input mechanism and configured for driving a drive signal onto the mechanical input mechanism. In some examples, the electronic device comprises a capacitive sense circuit comprising sense circuitry operatively coupled to the sense electrode and configured to measure an amount of coupling between the rotatable mechanical input mechanism and the sense electrode. In some examples, the electronic device comprises a housing, wherein the sense electrode is included in a gasket for connecting a display to the housing.
Abstract:
A PPG signal may be obtained from a pulse oximeter, which employs a light emitter and a light sensor to measure the perfusion of blood to the skin of a user. However, the signal may be compromised by noise due to motion artifacts. That is, movement of the body of a user may cause a gap between the tissue of a user and the electronic device, introducing noise to the signal. Further, the noise introduced may vary depending on how close the light emitter is to the light sensor. Accordingly, to address the presence of motion artifacts, examples of the present disclosure can receive light information at a light sensor from two different light emitters, each at a different distance from the light sensor along a surface of the electronic device, one relatively close to the light sensor and one relatively far from the light sensor.
Abstract:
A PPG signal may be obtained from a pulse oximeter, which employs a light emitter and a light sensor to measure the perfusion of blood to the skin of a user. However, the signal may be compromised by noise due to motion artifacts. To address the presence of motion artifacts, examples of the present disclosure can receive light information from each of two light guides, one in contact with the tissue of the user and one not in contact with the tissue of the user. First light information can be obtained from the first light guide, and second light information can be obtained from the second light guide. A heart rate signal can then be computed from the first and second light information, for example, by using blind source separation and/or cross-correlation.