Abstract:
Embodiments disclosed herein generally relate to plasma abatement processes and apparatuses. A plasma abatement process takes effluent from a foreline of a processing chamber, such as an implant chamber, and reacts the effluent with a reagent. The effluent contains a pyrophoric byproduct. A plasma generator placed within the foreline path may ionize the effluent and the reagent to facilitate a reaction between the effluent and the reagent. The ionized species react to form compounds which remain in a gaseous phase at conditions within the exhaust stream path. In another embodiment, the ionized species may react to form compounds which condense out of the gaseous phase. The condensed particulate matter is then removed from the effluent by a trap. The apparatuses may include an implant chamber, a plasma generator, one or more pumps, and a scrubber.
Abstract:
Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes an exhaust cooling apparatus located downstream of a plasma source. The exhaust cooling apparatus includes at least one cooling plate a device for introducing turbulence to the exhaust flowing within the exhaust cooling apparatus. The device may be a plurality of fins, a cylinder with a curved top portion, or a diffuser with angled blades. The turbulent flow of the exhaust within the exhaust cooling apparatus causes particles to drop out of the exhaust, minimizing particles forming in equipment downstream of the exhaust cooling apparatus.
Abstract:
Embodiments of the present disclosure generally relate techniques for abating N2O gas present in the effluent of semiconductor manufacturing processes. In one embodiment, a method includes injecting hydrogen gas or ammonia gas into a plasma source, and an effluent containing N2O gas and the hydrogen or ammonia gas are energized and reacted to form an abated material. By using the hydrogen gas or the ammonia gas, the destruction and removal efficiency (DRE) of the N2O gas is at least 50 percent while the concentration of nitric oxide (NO) and/or nitrogen dioxide (NO2) in the abated material is substantially reduced, such as at most 5000 parts per million (ppm) by volume.
Abstract:
Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes a foreline having a first end configured to couple to an exhaust port of a vacuum processing chamber, and an injection port is formed in the foreline. The abatement system further includes a scrubber coupled to a second end of the foreline. There is no effluent burner or plasma source interfaced with the foreline between the first end and the scrubber. Low temperature steam is injected into the foreline through the injection port to abate the PFCs flowing out of the vacuum processing chamber.