PROTECTION INTERFACES FOR LI-ION BATTERY ANODES

    公开(公告)号:US20220352520A1

    公开(公告)日:2022-11-03

    申请号:US17863106

    申请日:2022-07-12

    Abstract: Interfacial films, which are both electronic conducting and ion conducting, for anode films are provided. The one or more protective films described herein may be mixed conduction materials, which are both electronic conducting and ion-conducting. The one or more protective films described herein may include materials selected from lithium transition metal dichalcogenides, Li9Ti5O12, or a combination thereof. The lithium transition metal dichalcogenide includes a transition metal dichalcogenide having the formula MX2, wherein M is selected from Ti, Mo, or W and X is selected from S, Se, or Te. The transition metal dichalcogenide may be selected from TiS2, MoS2, WS2, or a combination thereof. The lithium transition metal dichalcogenide may be selected from lithium-titanium-disulfide (e.g., LiTiS2), lithium-tungsten-disulfide (e.g., LiWS2), lithium-molybdenum-disulfide (e.g., LiMoS2), or a combination thereof.

    COLD SPRAY DEPOSITION FOR ELECTRODE COATINGS

    公开(公告)号:US20230197922A1

    公开(公告)日:2023-06-22

    申请号:US17987477

    申请日:2022-11-15

    Abstract: Embodiments of the present disclosure generally relate to electrode coatings and methods of coating electrodes. In an embodiment, a method of depositing a structure on a lithium ion battery (LIB) anode is provided. The method includes accelerating particles in a working gas through a convergent-divergent nozzle to a process velocity that is from a critical velocity of the particles to an erosion velocity of the LIB anode, the particles comprising a metal and/or a Group III-VI element; heating or cooling the particles in the working gas at a softening temperature; ejecting the particles in the working gas from a nozzle outlet of the convergent-divergent nozzle, the particles ejected at the process velocity, wherein at least a portion of the particles are in solid phase when ejected from the convergent-divergent nozzle; and depositing a first structure on the LIB anode, the first structure comprising the metal and/or the Group III-VI element.

    PRE-LITHIATION AND LITHIUM METAL-FREE ANODE COATINGS

    公开(公告)号:US20220181601A1

    公开(公告)日:2022-06-09

    申请号:US17543322

    申请日:2021-12-06

    Abstract: A method and system for forming lithium anode devices are provided. In one embodiment, the methods and systems form pre-lithiated Group-IV alloy-type nanoparticles (NP's), for example, Li—Z where Z is Ge, Si, or Sn. In another embodiment, the methods and systems synthesize Group-IV nanoparticles and alloy the Group-IV nanoparticles with lithium. The Group-IV nanoparticles can be made on demand and premixed with anode materials or coated on anode materials. In yet another embodiment, the methods and systems form lithium metal-free silver carbon (“Ag—C”) nanocomposites (NC's). In yet another embodiment, a method utilizing silver (PVD) and carbon (PECVD) co-deposition to make anode coatings that can regulate lithium nucleation energy to minimize dendrite formation is provided.

    WEB EDGE METROLOGY
    7.
    发明申请

    公开(公告)号:US20240387792A1

    公开(公告)日:2024-11-21

    申请号:US18785521

    申请日:2024-07-26

    Abstract: Metrology systems and processing methods for continuous lithium ion battery (LIB) anode pre-lithiation and solid metal anode protection are provided. In some embodiments, the metrology system integrates at least one complementary non-contact sensor to measure at least one of surface composition, coating thickness, and nanoscale roughness. The metrology system and processing methods can be used to address anode edge quality. The metrology system and methods can facilitate high quality and high yield closed loop anode pre-lithiation and anode protection layer deposition, alloy-type anode pre-lithiation stage control improves LIB coulombic efficiency, and anode coating with pinhole free and electrochemically active protection layers resist dendrite formation.

    WEB EDGE METROLOGY
    9.
    发明申请

    公开(公告)号:US20220190306A1

    公开(公告)日:2022-06-16

    申请号:US17543360

    申请日:2021-12-06

    Abstract: Metrology systems and processing methods for continuous lithium ion battery (LIB) anode pre-lithiation and solid metal anode protection are provided. In some embodiments, the metrology system integrates at least one complementary non-contact sensor to measure at least one of surface composition, coating thickness, and nanoscale roughness. The metrology system and processing methods can be used to address anode edge quality. The metrology system and methods can facilitate high quality and high yield closed loop anode pre-lithiation and anode protection layer deposition, alloy-type anode pre-lithiation stage control improves LIB coulombic efficiency, and anode coating with pinhole free and electrochemically active protection layers resist dendrite formation.

Patent Agency Ranking