Abstract:
A method and apparatus for fabricating energy storage devices and device components is provided. It has been found that spraying of slurries comprising electro-active materials onto a flexible substrate and subsequently exposing the substrate to an increasing temperature gradient leads to the deposition of a dry or mostly dry film having reduced surface roughness. The increasing temperature gradient may result from a plurality of heated rollers over which the substrate traverses wherein each heated roller is heated to a temperature greater than the previous heated roller leading to the deposition of a dry or mostly dry film having a relatively smooth surface with low porosity. Deposition of a dry or mostly dry film eliminates the need for large and costly drying mechanism thus reducing both the cost and footprint of the apparatus.
Abstract:
Embodiments described herein relate to methods for forming patterns of semiconductor devices utilizing parylene gapfill layers deposited using a thermal chemical vapor deposition (CVD) process. In one embodiment the patterns of semiconductor devices are formed by forming amorphous carbon (a-C) mandrels on first layers, depositing amorphous silicon (a-Si) layers over the a-C mandrels and the first layers, etching the a-Si spacer layers to expose top surfaces of the a-C mandrels and to expose the first layers, depositing parylene gapfill layers using the CVD process, removing portions of the parylene gapfill layers until the top surfaces are exposed; and removing the a-Si spacer layers to expose the first layers and form patterns of semiconductor devices having a-C mandrels and parylene mandrels.
Abstract:
Methods of selectively depositing a mask layer on a surface of a patterned substrate and self-aligned patterned masks are provided herein. In one embodiment, a method of selectivity depositing a mask layer includes positioning the patterned substrate on a substrate support in a processing volume of a processing chamber, exposing the surface of the patterned substrate to a parylene monomer gas, forming a first layer on the patterned substrate, wherein the first layer comprises a patterned parylene layer, and depositing a second layer on the first layer. In another embodiment, a self-aligned patterned mask comprises a parylene layer comprising a plurality of parylene features and a plurality of openings, the parylene layer is disposed on a patterned substrate comprising a dielectric layer and a plurality of metal features, the plurality of metal feature comprise a parylene deposition inhibitor metal, and the plurality of parylene features are selectivity formed on dielectric surfaces of the dielectric layer.
Abstract:
Embodiments of the present disclosure relate to processes for filling trenches. The process includes depositing a first amorphous silicon layer on a surface of a layer and a second amorphous silicon layer in a portion of a trench formed in the layer, and portions of side walls of the trench are exposed. The first amorphous silicon layer is removed. The process further includes depositing a third amorphous silicon layer on the surface of the layer and a fourth amorphous silicon layer on the second amorphous silicon layer. The third amorphous silicon layer is removed. The deposition/removal cyclic processes may be repeated until the trench is filled with amorphous silicon layers. The amorphous silicon layers form a seamless amorphous silicon gap fill in the trench since the amorphous silicon layers are formed from bottom up.