Abstract:
Methods and apparatus for determining substrate integrity and alignment are described. Devices as described herein can include a transfer chamber, one or more process chambers, a loadlock chamber a first optical device, a second optical device and a radiation source positioned outside and above an opening for the loadlock chamber. Methods as described herein can include delivering a substrate to an opening in a process chamber, activating the optical device and the radiation source and capturing a plurality of images, extracting a substrate edge pattern from the plurality of images, comparing the substrate edge pattern to an expected edge pattern to determine a level of edge variance and adjusting or stopping a process if the level of edge variance is outside of an edge variation range.
Abstract:
The present invention generally relates to a method for detecting the breakage of one or more grounding straps without stopping processing or opening the processing chamber for inspection. In one embodiment, a method for detecting grounding strap breakage in a processing chamber includes monitoring real-time RF related data from plasma generated in the processing chamber. The method also includes comparing the real-time RF related data with a pre-determined threshold RF related data. The method includes generating an alert if the real-time RF related data meets or exceeds the pre-determined threshold RF related data. In one embodiment, the RF related data includes RF frequency, direct current voltage, voltage peak-to-peak, and/or RF reflected power.
Abstract:
Embodiments presented herein provide techniques for controlling deposition processes in a process chamber based on monitoring contaminant gas levels in a chamber. Embodiments include generating a data model defining acceptable levels within the chamber for each of a plurality of gas types. Gas levels of the plurality of gas types within the chamber are monitored using one or more sensor devices within the chamber. Upon determining that at least one gas level within the chamber violates the acceptable level for the respective gas type within the data model, embodiments perform a corrective action for the chamber.
Abstract:
A method and apparatus for measuring the thickness of a deposited layer are disclosed herein. Devices as described herein can include a transfer chamber, one or more processing chambers each having an entrance, a loadlock chamber comprising a loadlock entrance and a loadlock exit; and an optical monitoring system comprising a plurality of optical devices positioned proximate to at least one of the entrances. Methods as described herein can include delivering a substrate with at least one deposited layer through an opening in a chamber, activating an optical monitoring system at the opening of the chamber such that the optical monitoring system performs a plurality of optical measurements of the deposited layers, delivering the optical measurements to a signal processing system and correlating the optical measurements to one or more film attributes.
Abstract:
A method and apparatus for detecting substrate arcing and breakage within a processing chamber is provided. A controller monitors chamber data, e.g., parameters such as RF signals, voltages, and other electrical parameters, during operation of the processing chamber, and analyzes the chamber data for abnormal spikes and trends. Using such data mining and analysis, the controller can detect broken substrates without relying on glass presence sensors on robots, but rather based on the chamber data.
Abstract:
In one embodiment of the invention, a method for predicting a susceptor's service life in a processing chamber is disclosed. The method begins by creating virtual sensors in a processing chamber having a susceptor. The virtual sensors monitor one or more parameters on the susceptor and the age of the susceptor is tracked throughout the susceptor's life in the processing chamber with the virtual sensors.
Abstract:
A method comprising processing a substrate exposed to a plasma in a processing chamber, obtaining a metric indicative of a parameter of the plasma during the processing of the substrate, and determining a defect in the substrate by comparing the metric to a predefined criteria.