Abstract:
A method that forms a sacrificial fill material that can be selectively removed for forming a backside contact via for a transistor backside power rail. In some embodiments, the method may include performing an etching process on a substrate with an opening that is conformally coated with an oxide layer, wherein the etching process is an anisotropic dry etch process using a chlorine gas to remove the oxide layer from a field of the substrate and only from a bottom portion of the opening, and wherein the etching process forms a partial oxide spacer in the opening and increases a depth of the opening and epitaxially growing the sacrificial fill material in the opening by flowing a hydrogen chloride gas at a rate of approximately 60 sccm to approximately 90 sccm in a chamber pressure of approximately 1 Torr to approximately 100 Torr.
Abstract:
Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
Abstract:
Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
Abstract:
Embodiments of the present disclosure generally relate to a system used in a semiconductor device manufacturing process. More specifically, embodiments provided herein generally include apparatus and methods for synchronizing and controlling the delivery of an RF bias signal and a pulsed voltage waveform to one or more electrodes within a plasma processing chamber. The apparatus and methods disclosed herein can be useful to at least minimize or eliminate a microloading effect created while processing small dimension features that have differing densities across various regions of a substrate. The plasma processing methods and apparatus described herein are configured to improve the control of various characteristics of the generated plasma and control an ion energy distribution (IED) of the plasma generated ions that interact with a surface of a substrate during plasma processing. The ability to synchronize and control waveform characteristics of a voltage waveform bias established on a substrate during processing allows for an improved control of the generated plasma and process of forming, for example, high-aspect ratio features in the surface of the substrate by a reactive ion etching process. As a result, greater precision for plasma processing can be achieved, which is described herein in more detail.
Abstract:
Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
Abstract:
In some embodiments, a method of forming a three dimensional NAND structure atop a substrate may include providing to a process chamber a substrate having alternating nitride layers and oxide layers or alternating polycrystalline silicon layers and oxide layers formed atop the substrate and a photoresist layer formed atop the alternating layers; etching the photoresist layer to expose at least a portion of the alternating nitride layers and oxide layers or alternating polycrystalline silicon layers and oxide layers; providing a process gas comprising sulfur hexafluoride (SF6), carbon tetrafluoride (CF4), and oxygen (O2) to the process chamber; providing an RF power of about 4 kW to about 6 kW to an RF coil to ignite the process gas to form a plasma; and etching through a desired number of the alternating layers to form a feature of a NAND structure.