Abstract:
The present disclosure provides an apparatus and methods for forming nanowire structures with desired materials horizontal gate-all-around (hGAA) structures field effect transistor (FET) for semiconductor chips. In one example, a method of forming nanowire structures includes depositing a dielectric material on a first side and a second side of a stack. The stack may include repeating pairs of a first layer and a second layer. The first side is opposite the second side and the first side and the second side have one or more recesses formed therein. The method includes removing the dielectric material from the first side and the second side of the stack. The dielectric material remains in the one or more recesses. The method includes the deposition of a stressor layer and the formation of one or more side gaps between the stressor layer and the first side and the second side of the stack.
Abstract:
Embodiments provide methods for forming nanowire structures, such as, for example, horizontal gate-all-around (hGAA) structures. In one embodiment, a method includes selectively etching material from a stack disposed on a material layer located on a substrate with a plasma to create recesses on each of first and second sides of the stack and depositing a dielectric material on the first and second sides. The stack includes repeating pairs of first and second layers. The method also includes removing the dielectric material from the first and second sides, where the dielectric material remains in the recesses of the first and second sides, and selectively depositing a stressor layer on regions of the first and second sides which are unprotected by the dielectric material to form gaps between the stressor layer and the dielectric material remaining in the recesses of the first and second sides.
Abstract:
Embodiments provide apparatuses and methods for forming nanowire structures with desired materials horizontal gate-all-around (hGAA) structures field effect transistor (FET) for semiconductor chips. In one embodiments, a nanowire structure is provided and includes a stack containing repeating pairs of a first layer and a second layer and having a first side and a second side opposite from the first side, a gate structure surrounding the stack, a source layer adjacent to the first side, and a drain layer adjacent to the second side. The stack also contains one or more gaps disposed between the source layer and the second layer and having a dielectric constant value of about 1 and one or more gaps disposed between the drain layer and the second layer and having a dielectric constant value of about 1.
Abstract:
Methods and apparatus for forming a germanium containing film on a patterned substrate are described. The patterned substrate is a silicon, or silicon containing material, and may have a mask material formed on a surface thereof. The germanium containing material is formed selectively on exposed silicon in the recesses of the substrate, and an overburden of at least 50% is formed on the substrate. The germanium containing layer is thermally treated using pulsed laser radiation, which melts a portion of the overburden, but does not melt the germanium containing material in the recesses. The germanium containing material in the recesses is typically annealed, at least in part, by the thermal treatment. The overburden is then removed.