Abstract:
Methods for depositing and curing a flowable dielectric layer are disclosed herein. Methods can include forming a flowable dielectric layer, immersing the flowable dielectric layer in an oxygen-containing gas, purging the chamber and curing the layer with UV radiation. By curing the layer after an oxygen-containing gas pre-soak, the layer can be more completely cured during the UV irradiation.
Abstract:
Embodiments disclosed herein relate to cluster tools for forming and filling trenches in a substrate with a flowable dielectric material. In one or more embodiments, a cluster tool for processing a substrate contains a load lock chamber, a first vacuum transfer chamber coupled to the load lock chamber, a second vacuum transfer chamber, a cooling station disposed between the first vacuum transfer chamber and the second vacuum transfer chamber, a factory interface coupled to the load lock chamber, a plurality of first processing chambers coupled to the first vacuum transfer chamber, wherein each of the first processing chambers is a deposition chamber capable of performing a flowable layer deposition, and a plurality of second processing chambers coupled to the second vacuum transfer chamber, wherein each of the second processing chambers is a plasma chamber capable of performing a plasma curing process.
Abstract:
Implementations disclosed herein relate to methods for forming and filling trenches in a substrate with a flowable dielectric material. In one implementation, the method includes subjecting a substrate having at least one trench to a deposition process to form a flowable layer over a bottom surface and sidewall surfaces of the trench in a bottom-up fashion until the flowable layer reaches a predetermined deposition thickness, subjecting the flowable layer to a first curing process, the first curing process being a UV curing process, subjecting the UV cured flowable layer to a second curing process, the second curing process being a plasma or plasma-assisted process, and performing sequentially and repeatedly the deposition process, the first curing process, and the second curing process until the plasma cured flowable layer fills the trench and reaches a predetermined height over a top surface of the trench.
Abstract:
A method of post-treating a dielectric film formed on a surface of a substrate includes positioning a substrate having a dielectric film formed thereon in a processing chamber and exposing the dielectric film to microwave radiation in the processing chamber at a frequency between 5 GHz and 7 GHz.