摘要:
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
摘要:
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
摘要:
A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.
摘要:
An apparatus and method for storing electrical energy as chemical energy and recovering electrical energy from stored chemical energy. A solid oxide electrolyte electrochemical cell is operated in two modes. The first, energy storage, mode comprises steps of: (A) supplying electrical energy and steam to a solid oxide electrolyte electrochemical cell operating between 600.degree. C. and 1200.degree. C. as an electrolysis cell, to produce H.sub.2 and O.sub.2 ; (B) passing the H.sub.2 gas so produced into an energy storage reactor containing iron oxide, to produce iron metal and steam; (C) recirculating the steam produced in the energy storage reactor to the cathode of the electrolysis cell; and (D) repeating steps (A) to (C) until the iron oxide is converted to iron metal, for chemical storage of electrical energy. The second, energy recovery, mode comprises steps of: (E) supplying steam to the energy storage reactor containing iron metal, to produce iron oxides and H.sub.2 gas; (F) passing this H.sub.2 gas to the fuel anode of an electrochemical cell operating as a fuel cell, and supplying O.sub.2 gas to the air cathode of the electrochemical cell, to produce electrical energy and steam at the fuel anode; (G) recirculating the steam so produced to the energy storage reactor bed; (H) repeating steps (E) to (G) until the iron metal is converted to iron oxide and H.sub.2 gas; and (I) recovering the electrical energy produced.
摘要:
A plasma sprayed ceramic-metal fuel electrode is provided. The fuel electrode has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, an electrolyte formed on at least a portion of the air electrode, a plasma sprayed ceramic-metal fuel electrode formed on at least a portion of the electrolyte, and an interconnect layer to connect adjacent cells in a generator.
摘要:
A method to provide a tubular, triangular or other type solid oxide electrolyte fuel cell has steps including providing a porous air electrode cathode support substrate, applying a solid electrolyte and cell to cell interconnection on the air electrode, applying a layer of bismuth compounds on the surface of the electrolyte and possibly also the interconnection, and sintering the whole above the melting point of the bismuth compounds for the bismuth compounds to permeate and for densification.
摘要:
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
摘要:
.Iadd.A fuel cell and method of operation of same is detailed for measuring oxygen pressure, separating oxygen from a gas, or generating electrical energy. The fuel cell has first and second electrodes of selected materials with a solid partition of a solid electrolyte between the electrodes. The solid electrolyte consists of a solid solution of selected oxides having a high degree of oxygen ion conductivity. .Iaddend.
摘要:
A solid oxide fuel cell generator is provided for electrochemically reacting a fuel gas with a flowing oxidant gas at an elevated temperature to produce power. The generator includes a generator section receiving a fuel gas and a plurality of elongated fuel cells extending through the generator section and having opposing open fuel cell ends for directing an oxidant gas between opposing plena in the generator. A sealant defines a seal on the fuel cells adjacent at least one of the fuel cell ends. The sealant is a modified lanthanum borate aluminosilicate glass composition having a minimal amount of boron oxide and silica, and in which the sealant maintains substantially constant physical characteristics throughout multiple thermal cycles.
摘要:
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.