摘要:
A particulate matter concentration measuring apparatus is configured to measure a concentration of particulate matter in exhaust gas flowing through an exhaust line of a diesel engine. The apparatus includes an exhaust gas extraction line diverging from the exhaust line and having a flow passage cross-sectional area smaller than a flow passage cross-sectional area of the exhaust line. A particulate matter detection filter has a cell wall and is provided in the exhaust gas extraction line. A flow velocity of the exhaust gas passing through the cell wall is more than or equal to approximately 0.02 m/s and less than or equal to approximately 2.0 m/s. A differential pressure sensing part is configured to sense a differential pressure generated between an inlet and an outlet of the particulate matter detection filter.
摘要:
A particulate matter concentration measuring apparatus configured to measure concentration of particulate matter in exhaust gas passing through an exhaust line includes an exhaust gas collecting line branched from the exhaust line, a particulate matter detection filter provided in the exhaust gas collecting line, a differential pressure sensor configured to sense differential pressure between an inlet and an outlet of the particulate matter detection filter, a passage wall disposed so that the exhaust gas flows to a downstream side of the particulate matter detection filter, an inlet side passage through which the exhaust gas flows into the particulate matter detection filter in the passage wall, and an outlet side passage through which the exhaust gas flows out from the particulate matter detection filter. The outlet side passage has an outlet side cross-sectional area approximately 1.0 times or more larger than an inlet side cross-sectional area of the inlet side passage.
摘要:
A particulate matter concentration measuring apparatus configured to measure concentration of particulate matter in exhaust gas passing through an exhaust line includes an exhaust gas collecting line branched from the exhaust line, a particulate matter detection filter provided in the exhaust gas collecting line, a differential pressure sensor configured to sense differential pressure between an inlet and an outlet of the particulate matter detection filter, a passage wall disposed so that the exhaust gas flows to a downstream side of the particulate matter detection filter, an inlet side passage through which the exhaust gas flows into the particulate matter detection filter in the passage wall, and an outlet side passage through which the exhaust gas flows out from the particulate matter detection filter. The outlet side passage has an outlet side cross-sectional area approximately 1.0 times or more larger than an inlet side cross-sectional area of the inlet side passage.
摘要:
A particulate matter concentration measuring apparatus is configured to measure a concentration of particulate matter in exhaust gas flowing through an exhaust line of a diesel engine. The apparatus includes an exhaust gas extraction line diverging from the exhaust line and having a flow passage cross-sectional area smaller than a flow passage cross-sectional area of the exhaust line. A particulate matter detection filter has a cell wall and is provided in the exhaust gas extraction line. A flow velocity of the exhaust gas passing through the cell wall is more than or equal to approximately 0.02 m/s and less than or equal to approximately 2.0 m/s. A differential pressure sensing part is configured to sense a differential pressure generated between an inlet and an outlet of the particulate matter detection filter.
摘要:
A particulate matter sensor includes a detection filter, a differential pressure detecting unit, an on-off valve, and a valve control unit. The detection filter is installed in an exhaust passage connected to an internal combustion engine and is configured to detect particulate matter contained in an exhaust gas passing through the exhaust passage. The differential pressure detecting unit is configured to detect a pressure difference between an upstream side and a downstream side of the detection filter. The on-off valve is installed on the upstream side of the detection filter in the exhaust passage and is configured to control a flow of the exhaust gas toward the detection filter. The valve control unit is configured to control the on-off valve to be opened and closed.
摘要:
Exemplary embodiments provide a resistance welding method capable of stabilizing quality or improving efficiency of resistance welding such as spot welding. This resistance welding method comprises a calculating step of calculating resistance ratio X of a second electric resistance value R2 of workpieces to be joined in residual heat after Joule heating stops to a first electric resistance value R1 of the workpieces immediately before the Joule heating stops or vice versa (R2/R1 or R1/R2); a determining step of determining whether the resistance ratio X is equal to or greater than a threshold value Xn, and a reheating step of carrying out the Joule heating again when the resistance ratio X is smaller than the threshold value Xn. Thereby at least part of a welding portion is melted and solidified to reliably form a nugget, and a stably resistance-welded member can be provided.
摘要:
An information processing apparatus for allowing a memory to be added thereto while being powered. The apparatus comprises a processor, a first main memory initially connected, and a connecting switch. The switch connects the processor, the first main memory, and a second main memory to be added. Main memory management information in the first main memory includes the size of memory resources connected to the processor. A storage region in the connecting switch retains information about whether or not the processor is connected to each of the memories. The setup allows the apparatus to use the added memory without having to be restarted.
摘要:
An information processing apparatus for allowing a memory to be added thereto while being powered. The apparatus comprises a processor, a first main memory initially connected, and a connecting switch. The switch connects the processor, the first main memory, and a second main memory to be added. Main memory management information in the first main memory includes the size of memory resources connected to the processor. A storage region in the connecting switch retains information about whether or not the processor is connected to each of the memories. The setup allows the apparatus to use the added memory without having to be restarted.
摘要:
Disclosed is a method of measuring the OF width of a cylindrical single crystal ingot using an optical non-contact type displacement measuring device. This method can avoid the labor and measurement errors as generally seen in the conventional manual method and provide an easy and precise measurement. Further, the method can be automated if necessary. This method comprises the steps of detecting the boundary points between the OF and the round surface of the single crystal ingot from the displacement to be obtained by scanning the sensor while detecting the distance between the sensor and the ingot surface including the OF, and calculating the OF width C from the scanning distance A of the sensor from the first boundary point detection position to the second boundary point detection position and the difference B between the first distance 1.sub.1 from the first boundary point to the sensor and the second distance 1.sub.2 from the sensor to the second boundary point.
摘要:
A difference processing circuit receives input of welding images taken by a CCD camera in real time and then differentiates power monitoring images recorded in a memory from welding images to obtain difference processing reflected light images. Due to the difference processing performed by a difference processing circuit, foreign matter images included in welding images and power monitoring images are eliminated and the difference processing reflected light images that are obtained do not include any foreign matter images. A quality judgment device uses the difference processing reflected light images obtained by a difference processing circuit and conducts a quality judgment. As described above, since difference processing reflected light images do not include any foreign matter images, a quality judgment device does not receive any influence from the foreign matter that is adhered to the protective glass and can conduct an excellent evaluation of the welding quality.