摘要:
A modular battery pack (10) is described having several embodiments. In general, the modular battery pack has a battery cell cartridge (12), a circuit cartridge (14), and a housing (16). In conventional battery packs these three elements are combined into one single unit. The invention modularizes these components such that portions may be reused and shared. This results in a more cost effective power system for a portable electrical or electronic device (40) since, once the battery cell or cells (48) have expired, they can be replaced without having to replace the other components, in particular the circuitry.
摘要:
A modular battery pack (10) is described having several embodiments. In general, the modular battery pack has a battery cell cartridge (12), a circuit cartridge (14), and a housing (16). In conventional battery packs these three elements are combined into one single unit. The invention modularizes these components such that portions may be re-used and shared. This results in a more cost effective power system for a portable electrical or electronic device (40) since, once the battery cell or cells (48) have expired, they can be replaced without having to replace the other components, in particular the circuitry.
摘要:
A battery pack (62) comprises cells (74), and is charged by a charger (64) providing a current level. The charger (64) is a typical nickel-cadmium battery charger providing a first charge current level in excess of an optimum charge current level. The battery pack (62) further comprises a thermal sensing element (76) and an overcurrent charge protection circuit having an overcurrent switch (78), current sense circuit (80), comparator circuit (82), and temperature signal switch (84). If the current level through the cells (74) exceeds the optimum charge current level, the current sense circuit (80) provides a signal to comparator circuit (82) which actuates the temperature signal switch (84), simulating a hot battery pack. The charger (64) then switches to a second charge current level which does not exceed the optimum charge current level. If the charger (64) does not change current levels, a switch delay (86), after a brief period, accumulates enough voltage to actuate a driver switch (88) which opens the overcurrent switch (78), disconnecting the cells (74) from the charger (64).
摘要:
A rechargeable battery (100) includes a lockout circuit (200) for preventing rechargeable cells (101) from being charged when connected to a charging system (103) which does not include a data node (109). The lockout circuit (200) includes a lockout switch (113) which is biased by a voltage applied to data node (109). Data node (109) provides a closed circuit to allow rechargeable cells (101) to be charged only with charging systems which utilize a correct charging regimen.
摘要:
A lithium ion battery is provided with an overvoltage switch (12) and an overvoltage control circuit (14). The overvoltage control circuit causes the overvoltage switch to open, thus disconnecting the battery from a charger, upon the battery voltage reaching a first predetermined level when charged by a charger not designed to charge a lithium ion battery. However, when the battery is connected to an appropriately designed charger, the battery receives an input signal through an input terminal (24) which causes the overvoltage control circuit to open the overvoltage switch at a higher second predetermined level, should the appropriately designed charger fail to enter voltage regulation when the battery voltage reaches the first predetermined level.
摘要:
A device (111) for simulating a high battery temperature used in charging a rechargeable cell (101). The device takes advantage of a control signal generated by a voltage control circuit (103) used to disconnect a rechargeable cell (101) from a charging system (105) when a predetermined voltage is reached. The device (111) is generally used with cells having a lithium based chemistry and requiring a different charging regime then nickel chemistry cells. The device (111) is activated by the control signal from control circuit (103) which detects a predetermined voltage from rechargeable cell (101) enabling thermistor (113) to change its state. This change is detected by the charging system (105) which alters its mode of operation from a rapid charging rate to a slower charging rate. The device is retrofitable to existing rechargeable batteries allowing them to be charged using existing charging systems alien to the rechargeable battery.
摘要:
A battery recharge current source 12 provides a recharge current 14 to battery cells 16. Recharge current 14 is in excess of an optimum recharge current level for battery cells 16 and is divided into currents 26 and 28 by variable shunt load 24 as controlled by charge current control circuit 18. Charge current control circuit 18 is comprised of current sense circuit 20 and load control circuit 22. Current sense circuit 20 produces a current sense signal in response to current through battery cells 16. Load control circuit 22 is responsive to the current sense signal and controls variable shunt load 24 as needed to conduct excess current away from the battery cells.
摘要:
A battery system (400) for use with portable electronic products which includes protection circuitry for allowing the battery system to be safely recharged in a recharging system. The battery system (400) includes cells (401) and a plurality of controls including and overcharge protection circuit (433) for limiting the amount of current to the cells (401) by a charging network and a thermistor (415) and thermistor control (417) for controlling the state of the thermistor (415) to simulate a high temperature condition allowing the charging network to switch modes and accommodate battery system (400) which does not following the charging regimen provided by charging system.
摘要:
A battery charger (100) with an improved wide band, constant current source (10) with improved dynamic range is provided. The wide band constant current source (10) with improved dynamic range may include a current source (22), a voltage reference amplifier (50), a current control network (70) and overcurrent control circuit (80).
摘要:
A method (200) of charging a multiple voltage battery is disclosed. The multiple voltage battery is characterized by a preselected operating voltage and a charge profile curve having at least two occurrences of the slope thereof being substantially zero. The number of occurrences of the slope of the charge profile curve being substantially zero corresponds to the number of voltage levels the cell is adapted to operate in. The method recognizes the signature charging profile of the multiple voltage level battery and is thus capable of terminating battery charge at the level corresponding to the preselected operating voltage.