Abstract:
The present invention relates to a composition comprising a) a molding comprising a zeolitic material having framework type CHA, wherein the zeolitic material comprises one or more alkaline earth metals M and b) a mixed metal oxide comprising chromium, zinc, and aluminium. It also relates to the use of the composition in a process for producing C2 to C4 olefins from syngas.
Abstract:
A process for preparing an aromatic isocyanate by direct carbonylation of a nitro aromatic compound by reacting the nitro aromatic compound with carbon monoxide in the presence of a catalyst, characterized in that the catalyst contains a multi metallic material comprising one or more binary intermetallic phases of the general formula AxBy wherein: A is one or more element selected from Ni, Ru, Rh, Pd, Ir, Pt and Ag, B is one or more element selected from Sn, Sb, Pb, Zn, Ga, In, Ge and As, x is in the range 0.1-10, y in is in the range 0.1-10.
Abstract:
The present invention relates to a process for the conversion of ethylene oxide to 2-aminoethanol and/or ethane-1,2-diamme and/or linear polyethylenimines of the formula H2N—(CH2CH2NH)n—CH2CH2—NH2 wherein n≥1 comprising (i) providing a catalyst comprising a zeolitic material comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element; (ii) providing a gas stream comprising ethylene oxide and ammonia; (iii) contacting the catalyst provided in (i) with the gas stream provided in (ii) for converting ethylene oxide to 2-aminoethanol and/or ethane-1,2-diamine and/or linear polyethylenimines.
Abstract:
A continuous process for reforming one or more hydrocarbons to a synthesis gas comprising hydrogen and carbon monoxide, the start-up phase of said process comprising (i) providing a reactor comprising a reaction zone which comprises a catalyst comprising a mixed oxide comprising cobalt and oxygen; (ii) continuously passing an inert gas stream through the reaction zone according to (i), said inert gas stream comprising one or more inert gases; (iii) continuously passing a reactant gas stream into the reaction zone obtained from (ii), wherein from 95 to 100 volume-% of the reactant gas stream passed into the reaction zone consist of the one or more hydrocarbons, carbon dioxide, and water; subjecting said reactant gas stream to reforming conditions in said reaction zone; and removing a product stream from said reaction zone, said product stream comprising hydrogen and carbon monoxide.
Abstract:
A process for preparing an aromatic isocyanate by direct carbonylation of a nitro aromatic compound by reacting the nitro aromatic compound with carbon monoxide in the presence of a catalyst, characterized in that the catalyst contains a multi metallic material comprising one or more binary intermetallic phases of the general formula AxBy wherein: A is one or more element selected from Ni, Ru, Rh, Pd, Ir, Pt and Ag, B is one or more element selected from Sn, Sb, Pb, Zn, Ga, In, Ge and As, x is in the range 0.1-10, y in is in the range 0.1-10.
Abstract:
The present invention relates to a process for the dimerization of alkenes comprising (1) providing a gas stream comprising one or more alkenes; and (2) contacting the gas stream provided in (1) with a catalyst for obtaining a mixture M1 comprising one or more dimerization products of the one or more alkenes, wherein the catalyst in (2) comprises a zeolitic material having a framework structure type selected from the group consisting of MOR, BEA, FER, MFI, TON, FAU, and mixtures of two or more thereof, wherein the framework structure of the zeolitic material comprises YO2, wherein Y stands for one or more tetravalent elements.
Abstract:
A process for removing sulfur compounds selected from mercaptans (R—SH), organic sulfides (R—S—R′), organic disulfides (R—S—S—R′) and carbonyl sulfide (COS) from a hydrocarbonaceous stream comprises an absorption step of contacting the hydrocarbonaceous stream comprising one or more sulfur compounds with an absorbent comprising a first transition metal sulfide to bind at least some of the sulfur present in the sulfur compound or compounds in the transition metal sulfide as additional sulfur to form a second transition metal sulfide.