Abstract:
A detector (110) for determining a position of at least one object (112), the detector (110) comprising: at least one GP transfer device (114) for imaging the object (112) into an image plane (116), the transfer device (114) having a focal plane (118), at least one longitudinal optical sensor (122), wherein the longitudinal optical sensor (122) has at least one sensor region (124), wherein the longitudinal optical sensor (122) is at least partially transparent, wherein the longitudinal optical sensor (122) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of sensor region (124) by at least one light beam propagating from the object to the detector (110), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam in the sensor region (124); and at least one evaluation device (129), wherein the evaluation device (129) is designed to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal. Herein the at least one longitudinal optical sensor (122) comprises a focal longitudinal optical sensor (136), wherein the focal longitudinal optical sensor (136) at least substantially is arranged in the focal plane (118).
Abstract:
An optical detector (110) is disclosed, the optical detector (110) comprising: at least one spatial light modulator (114) being adapted to modify at least one property of a light beam (136) in a spatially resolved fashion, having a matrix (132) of pixels (134), each pixel (134) being controllable to individually modify the at least one optical property of a portion of the light beam (136) passing the pixel (134); at least one optical sensor (116) adapted to detect the light beam (136) after passing the matrix (132) of pixels (134) of the spatial light modulator (114) and to generate at least one sensor signal; at least one modulator device (118) adapted for periodically controlling at least two of the pixels (134) with different modulation frequencies; and at least one evaluation device (120) adapted for performing a frequency analysis in order to determine signal components of the sensor signal for the modulation frequencies.
Abstract:
A verification device (110) for verifying the identity of an article (114) is disclosed. The verification device (110) comprises: at least one illumination source (116) for illuminating at least one safety mark (124) of the article (114) with at least one light beam (122); at least one detector (118) adapted for detecting after an interaction of the light beam (122) with the safety mark (124), the detector (118) having at least one optical sensor (128), wherein the optical sensor (128) has at least one sensor region (130), wherein the optical sensor (128) is designed to generate at least one sensor signal in a manner dependent on an illumination of the sensor region (130) by the light beam (122), wherein the sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (122) in the sensor region (130); and at least one evaluation device (120) adapted for evaluating the sensor signal and for verifying the identity of the article (114) on the basis of the sensor signal. Further, a verification system (112), a method for verifying the identity of an article (114) and a use of an optical sensor (128) for verifying the identity of an article (114) are disclosed.
Abstract:
The present invention relates to an electrode layer comprising a porous film made of oxide semiconductor fine particles sensitized with a methine dye having a counter anion capable of absorbing electromagnetic radiation having a wavelength in the range of from 400 nm to 1000 nm. Moreover the present invention relates to a photoelectric conversion device comprising said electrode layer, a dye sensitized solar cell comprising said photoelectric conversion device, an organic electronic device comprising said photoelectric conversion device and to novel methine dyes having a counter anion capable of absorbing electromagnetic radiation having a wavelength in the range of from 400 nm to 1000 nm.
Abstract:
An optical detector (110) is disclosed, comprising: at least one optical sensor (122) adapted to detect a light beam (120) and to generate at least one sensor signal, wherein the optical sensor (122) has at least one sensor region (126), wherein the sensor signal of the optical sensor (122) is dependent on an illumination of the sensor region (126) by the light beam (120), wherein the sensor signal, given the same total power of the illumination, is dependent on a width of the light beam (120) in the sensor region (126); at least one focus-tunable lens (128) located in at least one beam path (130) of the light beam (120), the focus-tunable lens (128) being adapted to modify a focal position of the light beam (120) in a controlled fashion; at least one focus-modulation device (136) adapted to provide at least one focus-modulating signal (138) to the focus-tunable lens (128), thereby modulating the focal position; at least one imaging device (140) being adapted to record an image; and at least one evaluation device (142), the evaluation device (142) being adapted to evaluate the sensor signal and, depending on the sensor signal, to effect a recording of the image by the imaging device (140).
Abstract:
A target device (110) for use in optical detection of at least one object (112) is disclosed. The target device (110) is adapted for at least one of being integrated into the object (112), being held by the object (112) or being attached to the object (112). The target device (110) has at least one reflective element (114) for reflecting a light beam (118). The target device (110) further has at least one color conversion element (116), the color conversion element (116) being adapted to change at least one spectral property of the light beam (118) during reflecting the light beam (118).
Abstract:
A detector device (111) for determining an orientation of at least one object (112) is disclosed. The detector device comprises: at least two beacon devices (204), the beacon devices (204) being adapted to be at least one of attached to the object (112), held by the object (112) and integrated into the object (112), the beacon devices (204) each being adapted to direct light beams (138) towards a detector (110), the beacon devices (204) having predetermined coordinates in a coordinate system of the object (112); at least one detector (110) adapted to detect the light beams (138) traveling from the beacon devices (204) towards the detector (110); at least one evaluation device (142), the evaluation device (142) being adapted to determine longitudinal coordinates of each of the beacon devices (204) in a coordinate system of the detector (110), the evaluation device (142) being further adapted to determine an orientation of the object (112) in the coordinate system of the detector (110) by using the longitudinal coordinates of the beacon devices (204).
Abstract:
An optical detector (110) is disclosed, the optical detector (110) comprising: at least one spatial light modulator (114) being adapted to modify at least one property of a light beam (136) in a spatially resolved fashion, having a matrix (132) of pixels (134), each pixel (134) being controllable to individually modify the at least one optical property of a portion of the light beam (136) passing the pixel (134); at least one optical sensor (116) adapted to detect the light beam (136) after passing the matrix (132) of pixels (134) of the spatial light modulator (114) and to generate at least one sensor signal; at least one modulator device (118) adapted for periodically controlling at least two of the pixels (134) with different modulation frequencies; and at least one evaluation device (120) adapted for performing a frequency analysis in order to determine signal components of the sensor signal for the modulation frequencies.
Abstract:
An optical detector (110) is disclosed, comprising: at least one optical sensor (122) adapted to detect a light beam (116) and to generate at least one sensor signal, wherein the optical sensor (122) has at least one sensor region (126), wherein the sensor signal of the optical sensor (122) is dependent on an illumination of the sensor region (126) by the light beam (116), wherein the sensor signal, given the same total power of the illumination, is dependent on a width of the light beam (116) in the sensor region (126); at least one focus-tunable lens (130) located in at least one beam path (132) of the light beam (116), the focus-tunable lens (130) being adapted to modify a focal position of the light beam (116) in a controlled fashion; at least one focus-modulation device (136) adapted to provide at least one focus-modulating signal (138) to the focus-tunable lens (130), thereby modulating the focal position; and at least one evaluation device (140), the evaluation device (140) being adapted to evaluate the sensor signal.
Abstract:
An optical detector (110) is disclosed. The optical detector (110) comprises: an optical sensor (112), having a substrate (116) and at least one photosensitive layer setup (118) disposed thereon, the photosensitive layer setup (118) having at least one first electrode (120), at least one second electrode (130) and at least one photovoltaic material (140) sandwiched in between the first electrode (120) and the second electrode (130), wherein the photovoltaic material (140) comprises at least one organic material, wherein the first electrode (120) comprises a plurality of first electrode stripes (124) and wherein the second electrode (130) comprises a plurality of second electrode stripes (134), wherein the first electrode stripes (124) and the second electrode stripes (134) intersect such that a matrix (142) of pixels (144) is formed at intersections of the first electrode stripes (124) and the second electrode stripes (134); and at least one readout device (114), the readout device (114) comprising a plurality of electrical measurement devices (154) being connected to the second electrode stripes (134) and a switching device (160) for subsequently connecting the first electrode stripes (124) to the electrical measurement devices (154).