Abstract:
A polyurethane spraying system minimizes emissions of a polyisocyanate while spraying a mixture of a polyisocyanate and a resin composition onto a surface. The system includes a first reactant supply tank including the resin composition. The system also includes a second reactant supply tank including the polyisocyanate. The system further includes a non-gaseous pump that is coupled with the first and second reactant supply tanks, a mixing apparatus that is coupled with the first and second reactant supply tanks for mixing the resin composition and the polyisocyanate prior to spraying, and a particular spray nozzle that is coupled with the mixing apparatus. The polyurethane spraying system produces less than 50 parts of the polyisocyanate per one billion parts of air according to the NIOSH 5521 Impingement Method while spraying the mixture onto the surface.
Abstract:
A system and method for forming a polyurethane foam includes supplying an isocyanate component from a source of isocyanate to a proportioner. A resin component from a source of resin is supplied to a metering unit and an additive having an unstable state from a source of additive is supplied to the metering unit. The resin component and the additive form a reactive mixture when combined. The system and method includes delivering the reactive mixture by the metering unit to an accumulator and storing the reactive mixture in the accumulator. The system and method further includes demanding a supply of the reactive mixture with the proportioner and supplying the reactive mixture by the accumulator to the proportioner and mixing the reactive mixture with the isocyanate component by the proportioner to form the polyurethane foam.
Abstract:
A polyurethane spraying system minimizes emissions of a polyisocyanate while spraying a mixture of a polyisocyanate and a resin composition onto a surface. The system includes a first reactant supply tank including the resin composition. The system also includes a second reactant supply tank including the polyisocyanate. The system further includes a non-gaseous pump that is coupled with the first and second reactant supply tanks, a mixing apparatus that is coupled with the first and second reactant supply tanks for mixing the resin composition and the polyisocyanate prior to spraying, and a particular spray nozzle that is coupled with the mixing apparatus. The polyurethane spraying system produces less than 50 parts of the polyisocyanate per one billion parts of air according to the NIOSH 5521 Impingement Method while spraying the mixture onto the surface.
Abstract:
A rigid foam having increased flame retardance comprises the reaction product of an isocyanate component and an isocyanate-reactive component. The isocyanate component and an isocyanate-reactive component are reacted in the presence of an isocyanurate catalyst component and a carbodiimide catalyst component. The isocyanurate catalyst component comprises 1,3,5-tris(3-(dimethylamino)propyl)-hexahydro-s-triazine and the carbodiimide catalyst component comprises 3-methyl-1-phenyl-2-phospholene-1-oxide. A method of forming the rigid foam on a surface comprises the steps of providing the isocyanate component, providing the isocyanate-reactive component, providing the isocyanurate catalyst component, providing the carbodiimide catalyst component, and spraying the isocyanate component, isocyanate-reactive component, isocyanurate catalyst component, and carbodiimide catalyst component onto the surface to form the rigid foam on the surface.
Abstract:
A rigid foam having increased flame retardance comprises the reaction product of an isocyanate component and an isocyanate-reactive component. The isocyanate component and an isocyanate-reactive component are reacted in the presence of an isocyanurate catalyst component and a carbodiimide catalyst component. The isocyanurate catalyst component comprises 1,3,5-tris(3-(dimethylamino)propyl)-hexahydro-s-triazine and the carbodiimide catalyst component comprises 3-methyl-1-phenyl-2-phospholene-1-oxide. A method of forming the rigid foam on a surface comprises the steps of providing the isocyanate component, providing the isocyanate-reactive component, providing the isocyanurate catalyst component, providing the carbodiimide catalyst component, and spraying the isocyanate component, isocyanate-reactive component, isocyanurate catalyst component, and carbodiimide catalyst component onto the surface to form the rigid foam on the surface.