Abstract:
Embodiments of the present invention disclose an array substrate comprising a base substrate and a plurality of pixel units disposed on the base substrate, the pixel unit comprising a transflective layer formed on the base substrate; a thin film transistor structure formed over the transflective layer; an organic light-emitting diode disposed in a pixel region of the pixel unit and driven by the thin film transistor structure, and in a direction away from the base substrate, the organic light-emitting diode sequentially comprising a first electrode that is transparent, an organic light-emitting layer and a second electrode for reflecting light; and a color filter, disposed between the second electrode of the organic light-emitting diode and the transflective layer; wherein the second electrode of the organic light-emitting diode and the transflective layer constitute a microcavity structure. Embodiments of the present invention also disclose a method for manufacturing the array substrate and a display device including the above array substrate.
Abstract:
An array substrate, a manufacturing method thereof and an OLED display device are provided. The array substrate comprises a plurality of pixel units disposed on a substrate, wherein each pixel unit includes a TFT structure formed on the substrate and an OLED driven by the TFT structure; the TFT structure includes a drive TFT. A drain electrode of the drive TFT is connected with the OLED; a gate electrode and the drain electrode of the drive TFT are at least partially overlapped to form a storage capacitor. A recess is formed in an insulating layer interposed between the gate electrode and the drain electrode corresponding to the overlapped area, so that the distance between the gate electrode and the drain electrode is less than the thickness of the insulating layer corresponding to the non-overlapped area.
Abstract:
The present invention discloses an organic electroluminescent display panel, comprising: a base substrate; a top-emitting type organic electroluminescent structure located on the base substrate, the organic electroluminescent structure comprising an anode, a light emitting layer and a cathode arranged in this order from the base substrate; and a packaging film covering the organic electroluminescent structure; the organic electroluminescent display panel further comprises a secondary electrode provided on the packaging film and electrically connected with the cathode through a via hole penetrating through the packaging film. Since the secondary electrode is additionally provided on the packaging film and is electrically connected with the cathode through the via hole penetrating through the packaging film, the secondary electrode electrically connected with the cathode can increase an equivalent thickness of the cathode and thus reduce the resistance of the cathode, which can avoid the problem of large voltage drop due to large resistance of the cathode when a thinner metal is used as the cathode, thereby can avoid damage of the organic electroluminescent display panel due to the larger voltage drop.
Abstract:
The present invention discloses an array substrate, a method of manufacturing the array substrate and a display device. Since the respective surfaces of the sources, the drains and the data lines are clad by the respective insulating films, in formation of the patterns of the pixel electrodes above the insulating films by using a patterning process, the insulating films can prevent the sources and the data lines provided under them from being corroded by an etching agent when an etching process is performed to form the patterns of the pixel electrodes, so as to avoid an influence on display quality of a display panel. Furthermore, since the insulating films are formed by curing the insulating material, instead of the photoresist, remained on the patterns of the sources, the drains and the data lines when forming the patterns of the sources, the drains and the data lines by using the insulating material (replacing the photoresist), formation of the insulating films will not increase the number of masks, and a step of peeling off the insulating material is omitted. Furthermore, the respective connecting portions electrically connects the respective drains with the respective pixel electrodes through the respective first via holes A located above the respective drains and passing through the respective insulating films, so that a normal display function of the display panel can be ensured.
Abstract:
The present invention discloses an array substrate, a method of manufacturing the same, and a liquid crystal display apparatus. The present invention relates a display technical field, and an object of which is to reduce a display chromatic aberration and improve a display effect. The array substrate comprises a plurality of pixel units arranged in an array. The pixel units each comprise at least a first sub pixel unit, a second sub pixel unit and a third sub pixel unit. The sub pixel units each comprise a pixel electrode, a common electrode and an orientation layer. At least one of the pixel electrode and the common electrode in each of the sub pixel units is configured to be a strip electrode. The strip electrode of the first sub pixel unit defines a first angle with respect to an orientation of the orientation layer, the strip electrode of the second sub pixel unit defines a second angle with respect to the orientation of the orientation layer, the strip electrode of the third sub pixel unit defines a third angle with respect to the orientation of the orientation layer. At least two of the first angle, the second angle and the third angle are not equal to each other.
Abstract:
Embodiments of the invention disclose an array substrate and a fabrication method thereof, and a display device. The array substrate comprises a plurality of pixel units disposed on a base substrate. Each pixel unit comprises a thin-film transistor region and a display region. A thin-film transistor structure is formed in the thin-film transistor region, and an organic light-emitting diode. The organic light-emitting diode comprises a transparent first electrode, a light-emitting layer, and a second electrode for reflecting light that are sequentially formed. A transflective layer is formed in the display region. A color filter film is formed in the display region and is disposed between the second electrode of the organic light-emitting diode and the transflective layer. The second electrode of the organic light-emitting diode and the transflective layer form a microcavity structure. The color filter films in the pixel units of different colors have different thicknesses.
Abstract:
Embodiments of the invention disclose an array substrate and a fabrication method thereof, and a display device. The array substrate comprises a plurality of pixel units disposed on a base substrate, and the pixel unit comprises a thin-film transistor structure region and a display region other than the thin-film transistor structure region. A thin-film transistor structure is formed in the thin-film transistor structure region, an organic light-emitting diode is formed in the display region, and the thin-film transistor structure is configured to drive the organic light-emitting diode. A light-shielding layer is formed above the thin-film transistor structure in the thin-film transistor structure region, and the light-shielding layer is configured to block a blue light from entering the thin-film transistor structure.
Abstract:
Embodiments of the present invention provide an array substrate, a manufacturing method thereof and a display device. The array substrate comprises a plurality of pixel units disposed on a substrate, each pixel unit including a thin-film transistor (TFT) structure and an organic light-emitting diode (OLED) driven by the TFT structure. The OLED includes a transparent first electrode, an emission layer and a second electrode for reflecting light in sequence in a direction away from the substrate. A color filter disposed between a layer provided with the OLED and a layer provided with the TFT structure. A transflective layer disposed between the OLED and the color filter. The second electrode of the OLED and the transflective layer constitute a microcavity structure.
Abstract:
Embodiments of the present invention disclose a method for manufacturing an array substrate comprising: forming patterns of a thin film transistor structure and a passivation layer on a base substrate to define a plurality of pixel units on the base substrate; forming subsequently patterns of a transflective layer and a color filter in a pixel region of the pixel unit, the color filter being disposed above the transflective layer; forming an organic light-emitting diode in the pixel region of the pixel unit so that the transflective layer and the color filter are disposed between the organic light-emitting diode and the thin film transistor structure. Embodiments of the present invention also provide an array substrate.
Abstract:
An embodiment of the present invention disclose a flexible display device, comprising: a housing; a supporting member, disposed inside the housing; a flexible display screen, having a first end and a second end opposite to each other, the first end being connected with the supporting member and being able to rotate around an axis; and at least one bracket rotationally connected with the housing and having a slot is arranged thereon, wherein, a side edge portion of the flexible display screen located between the first end and the second end is capable of moving along a direction of the slot under guidance of the bracket.