Abstract:
A medical device having a polymer-free outer surface layer comprising a crystalline drug selected from the group consisting of everolimus, tacrolimus, sirolimus, zotarolimus, biolimus, and rapamycin. The device may be produced by a method comprising the steps of providing a medical device; applying a solution of the drug to said portion of the outer surface to form a coating of amorphous drug; and vapor annealing the drug with a solvent vapor to form crystalline drug; wherein a seed layer of a crystalline form of said drug having a maximum particle size of about 10 μm or less is applied to at least said portion of the outer surface of the device before or after applying the drug solution, but before vapor annealing the amorphous coating.
Abstract:
In one aspect, the present disclosure pertains to lubricous coating compositions that comprise (a) a higher molecular weight polyvinylpyrrolidone, (b) a lower molecular weight polyvinylpyrrolidone, and (c) a polyfunctional unsaturated crosslinking agent. In some embodiments, such lubricous coating compositions are present in crosslinked form on the surface of a medical article. In some embodiments, the lubricous coating compositions further comprise a solvent, in which case such compositions may be, for example, applied to a substrate in the form of a layer and subsequently crosslinked, thereby forming a lubricious coating on the substrate. In another aspect, the present disclosure is directed to methods for forming various medical articles.
Abstract:
Polymer microspheres for embolizing blood vessels and optionally delivering therapeutic agents are provided. The microspheres include PLGA 50:50 and/or Ptx, and are generally formed by emulsion means.
Abstract:
A device for permanent placement across an atrial appendage ostium in a patient includes a support structure having a contracted delivery configuration and an expanded deployed configuration defining a radially enlarged portion to permanently engage an interior wall of the atrial appendage, a membrane attached to the support structure and configured to extend across the ostium of the atrial appendage when the support structure is in the expanded deployed configuration, and a polymer coating disposed on at least one of the support structure and the membrane, the polymer coating including a direct oral anticoagulant (DOAC) dispersed in a polymer.
Abstract:
Medical devices as wells as methods for making and using medical devices are disclosed. An example medical device may include a left atrial appendage device. The left atrial appendage device may include an expandable frame configured to shift between a first configuration and an expanded configuration. A fabric mesh may be disposed along at least a portion of the expandable frame. An anti-thrombogenic coating may be disposed along the fabric mesh.
Abstract:
A system and method for treating atherosclerotic plaque. The system includes a first catheter including an expandable balloon and a second catheter including a lumen in fluid communication with a distal hole. The method includes inserting the first catheter into a body lumen adjacent to a plaque formation, and deploying a balloon from the first catheter adjacent to the plaque formation. In addition, the method includes inserting the second catheter adjacent to the first catheter, and routing the distal end portion of second catheter along at least a portion of the deployed balloon of the first catheter. Further, the method includes routing at least a portion of the second catheter into a subintimal space adjacent to the atherosclerotic plaque. Furthermore, the method includes injecting a therapeutic agent into the subintimal space adjacent to the atherosclerotic plaque.
Abstract:
A catheter system includes a catheter having a first balloon and a second balloon. The first balloon is longitudinally offset from the second balloon along the length of the catheter. The first and second balloons both have expanded and unexpanded states. The second balloon has a drug coating. The catheter system has a first configuration, a second configuration, and a third configuration. In the first configuration, the first balloon is in the unexpanded state and the second balloon is in the unexpanded state. In the second configuration, the first balloon is in the expanded state and the second balloon is in the unexpanded state. In the third configuration, the first balloon is in the expanded state and the second balloon is in the expanded state.
Abstract:
A device for permanent placement across an atrial appendage ostium in a patient includes a support structure having a contracted delivery configuration and an expanded deployed configuration defining a radially enlarged portion to permanently engage an interior wall of the atrial appendage, a membrane attached to the support structure and configured to extend across the ostium of the atrial appendage when the support structure is in the expanded deployed configuration, and a polymer coating disposed on at least one of the support structure and the membrane, the polymer coating including a direct oral anticoagulant (DOAC) dispersed in a polymer.
Abstract:
Polymer microspheres for embolizing blood vessels and optionally delivering therapeutic agents are provided. The microspheres include PLGA 50:50 and/or Ptx, and are generally formed by emulsion means.