Abstract:
A data processing method for determining the positional information of characteristic points of a leg, the method comprising the following steps performed by a computer: a) acquiring, by detecting via a hand-held device a stationary reference (R3) and at least one further information, at least four different positions of the femur (F), wherein the pelvis within which the femur (F) can turn is stationary with respect to the stationary reference (R3) and the femur (F) is in a different position each time a positional information value of the femur (F) is acquired; b) determining from the at least four different acquired positional information values of the femur (F) the position of the center of rotation (COR) of the femoral head in relation to a femur reference (R1, R4); c) acquiring a femur information by detecting via a hand-held device a femur reference (R1), and at least one further information; d) determining from the femur information and the at least one further information acquired in step c) the distal end point of the femur axis and the proximal end point of the tibia axis at least in relation to the femur reference (R1); and e) determining the distal end point of the tibia axis by acquiring via a hand-held device the positional information of an ankle reference (R2) being at the distal end point of the tibia axis.
Abstract:
The invention relates to a medical registration apparatus (1), comprising •two flanks (2a, 2b); •a pivot portion (3) around which at least one of the flanks (2a, 2b) is rotatable with respect to a rotation centre (3c, 3d) (FIG. 1, FIG. 3); •a contacting portion (4a, 4b) on each of the flanks (2a, 2b), each contacting portion (4a, 4b) being spaced apart from the rotation centre (3c, 3d); and •a sensor (5, 6) being arranged with an offset (r, FIG. 4 A) to a line (a) connecting the contacting portions (4a, 4b). The invention also relates to a data processing method for use with the medical registration apparatus.
Abstract:
A multilayer stent configured for implantation in a body lumen, including a tubular outer layer comprising a first plurality of struts defining an outer layer mesh pattern extending between first and second ends of the outer layer, and a tubular inner layer comprising a second plurality of struts defining an inner layer mesh pattern extending between first and second ends of the inner layer. The inner-layer is at least partially disposed within the outer layer, wherein at least a portion of the inner layer is attached to, or integrally formed with, at least a portion of the outer layer.
Abstract:
The invention relates to a tracking reference, comprising: a reference array (1) featuring a positionally fixed arrangement of at least two tracking markers (3); and an interface (4A) for detachably coupling the reference array (1) to a base member (2), wherein the interface (4A) comprises at least one supporting surface (5) for contacting the base member (2), wherein the interface (4A) comprises magnetic means (6) which generate a force at the reference array, wherein the force (F) is directed away from the supporting surface (5).
Abstract:
The present invention relates to a medical fastening system for fastening a medical marker device to an anatomical body part, the fastening system comprising: a) a base part comprising a holding unit for holding the marker device; and b) a connecting part (5) for connecting the base part to the anatomical body part, characterized in that c) the base part comprises a fastening unit for fastening the connecting part to the base part so that the base part remains rotatable relative to the connecting part.
Abstract:
A medical data processing method of determining a spatial relationship between a marker device (1, 1′, 1″, 20) and a resection plane (50, 120) associated with an anatomical structure (5, 12) of a patient's body, the marker device (1, 1′, 1″, 20) being video-detectable by an imaging unit (6), the method being constituted to be executed by a computer and comprising the following steps: a) acquiring imaging unit position data describing a predetermined spatial relationship between the imaging unit (6) and the resection plane; b) acquiring marker device position data describing a spatial relationship between the marker device (1, 1′, 1″, 20) and the imaging unit (6) based on imaging the marker device (1, 1′, 1″, 20) with the imaging unit (6) in order to generate an orientation-dependent image appearance of the marker device (1, 1′, 1″, 20); c) determining, based on the imaging unit position data acquired in step a) and the marker device position data acquired in step b) and based on the orientation-dependent image appearance of the marker device (1, 1′, 1″, 20), resection plane (50, 120) data describing the spatial relationship between the resection plane (50, 120) and the marker device (1, 1′, 1″, 20).
Abstract:
A medical marker (12) device for detection by a navigation system in a navigated medical procedure, comprising: a) an image-detectable two-dimensional marker pattern (13) for detection by an imaging unit of the navigation system; b) a carrier part (14) for carrying the marker pattern (13); c) a positioning part (15) for positioning the marker device (12) on an anatomical structure (11); and d) a support part (16) for supporting the carrier part (14) and the positioning part (15).