Abstract:
Systems and methods for channel assignment configuration in a multiple access point (AP) environment are provided. The multiple APs can be homogeneous or heterogeneous and can implement one or more radio access technologies (RATs), including Massive Multiple Input Multiple Output (M-MIMO) RATs. A channel assignment configuration for a user equipment (UE) can identify one or more communication channels to be established to serve the UE by one or more of the APs.
Abstract:
An interference suppression (IS) time/frequency zone for improved interference suppression is provided. The IS time/frequency zone can be scheduled and set up using existing signaling of the Almost Blank Subframe (ABS) framework. This includes using the existing signaling of the ABS framework to schedule the IS time/frequency zone, coordinate transmission parameters among base stations for the IS time/frequency zone, and signal the IS time/frequency zone to the UT. In another aspect, interfering base stations align respective reference signals during the IS time/frequency zone, which allows the UT to measure the channels from its serving base station and/or the interfering base stations(s). With channel state information knowledge at the UT, interference suppression can be achieved.
Abstract:
As wireless networks evolve, network providers may utilize legacy LTE devices as well as devices that support massive multi-input, multiple output (M-MIMO). Systems and methods for simultaneously servicing legacy LTE devices and M-MIMO devices are provided. In embodiments, a transmission zone for M-MIMO communications is defined within a legacy, non M-MIMO radio frame. The location of the M-MIMO transmission zone is transmitted to user devices. For example, an identification of the location of the M-MIMO transmission zone is transmitted in a system information message. In a further example, the location of the M-MIMO transmission zone is transmitted in the downlink control information. The location of the M-MIMO transmission zone may be defined dynamically based on a variety of criteria. In addition or alternatively, a set of pre-defined transmission zones may be utilized.
Abstract:
A multiple input multiple output (MIMO) antenna system is implemented for communications in a wireless device. MIMO beamforming techniques are utilized to improve communications, and may be utilized in full-duplex mode. Techniques include the formation of beamforming patterns having orthogonal polarizations to one another at each communication device, but having matching polarization between transmit/receive pairs located at each respective communication device. Techniques also include the formation of beamforming patterns in a direction towards another communication device to maximize transmit power in that direction while inducing nulls in the beamforming pattern to reduce self-interference coupling via antennas configured for reception. Full-duplex communications are improved through monitoring of the self-interference coupling and adapting the beamforming patterns to reduce it. Beamforming vectors may be generated by solving a cost function that may include an additional constraint of reduction of self-interference coupling.
Abstract:
Antenna systems and methods for Massive Multi-Input-Multi-Output (MIMO) (M-MIMO) communication are provided. Antennas systems include a M-MIMO transmitter architecture with a hybrid matrix structure. The hybrid matrix structure protects against transmit path component failures and ensures that a spatial rate of the M-MIMO transmitter is not degraded by the failures. Antenna systems and methods also include antenna selection schemes for selecting a subset of antennas from a plurality of antennas to transmit to a receiver.
Abstract:
A framework for enabling a user equipment (UE) to apply interference suppression processing during network conditions that are favorable to interference suppression or that are known is provided. The framework includes an interference suppression (IS) time and frequency (time/frequency) zone, which can be scheduled by a serving base station and signaled to the UE. In an embodiment, the serving base station coordinates with the interfering base station(s) to create a network condition favorable to interference suppression at the UE during the IS time/frequency zone. In another embodiment, the serving base station opportunistically schedules the IS time/frequency zone for the UE whenever it determines favorable transmission parameters being used or scheduled for use by the interfering base station(s). The UE applies interference suppression processing within the IS time/frequency zone, thereby improving receiver performance.
Abstract:
A multiple input multiple output (MIMO) antenna system is implemented for communications in a wireless device. Information regarding the environment surrounding the wireless device may be used to determine which of the MIMO antennas are selected such that communications performance is improved. Metrics related to signal transmission and reception by the wireless device may be monitored and used to determine which MIMO antennas are selected. The metrics may be measured by any of the MIMO antennas at any time, including antennas currently engaged or not engaged in active communications. The metrics may be used in lieu of sensors to supplement or replace wireless device functionality otherwise provided by the sensors.
Abstract:
Antenna systems and methods for Massive Multi-Input-Multi-Output (MIMO) (M-MIMO) communication are provided. Antennas systems include a M-MIMO transmitter architecture with a hybrid matrix structure. The hybrid matrix structure protects against transmit path component failures and ensures that a spatial rate of the MIMO transmitter is not degraded by the failures. Antenna systems and methods also include antenna selection schemes for selecting a subset of antennas from a plurality of antennas to transmit to a receiver.
Abstract:
Where receiver performance at a User Equipment (UE) is similar using a coarse precoder codebook as using a fine resolution precoder codebook, the signaling of a two-component precoder codebook is modified such that a precoder codeword is signaled to the UE in only a portion of the physical resources allocated for precoder codeword signaling to the UE. The remaining portion of the allocated physical resources is used to signal control information to improve the UE's performance.
Abstract:
Systems and methods for enabling a wireless backhaul network between access points (APs) in a wireless network are provided. In an embodiment, the wireless backhaul network is enabled using a Massive Multiple Input Multiple Output (MIMO) radio access technology (RAT). In another embodiment, the wireless backhaul network is established using the same RAT as used by the APs to serve user devices, and can utilize the same time and frequency resources used for user communication.