Abstract:
Antenna systems and methods for Massive Multi-Input-Multi-Output (MIMO) (M-MIMO) communication are provided. Antennas systems include a M-MIMO transmitter architecture with a hybrid matrix structure. The hybrid matrix structure protects against transmit path component failures and ensures that a spatial rate of the MIMO transmitter is not degraded by the failures. Antenna systems and methods also include antenna selection schemes for selecting a subset of antennas from a plurality of antennas to transmit to a receiver.
Abstract:
A method and apparatus of selecting which of a plurality of receiver chains of a mobile unit to receive wireless signals, is disclosed. One method includes measuring a first receive signal quality while all of the plurality of receiver chains are receiving wireless signals, and measuring a second receive signal quality while a subset of the plurality of receiver chains are receiving wireless signals. The subset of the plurality of receiver chains are selected to receive wireless signal unless the first receive signal quality is a threshold better than the second receive signal quality. If the first receive signal quality is a threshold better than the second receive signal quality then all the plurality of receiver chains are selected to receive wireless signals.
Abstract:
Antenna systems and methods for Massive Multi-Input-Multi-Output (MIMO) (M-MIMO) communication are provided. Antennas systems include a M-MIMO transmitter architecture with a hybrid matrix structure. The hybrid matrix structure protects against transmit path component failures and ensures that a spatial rate of the M-MIMO transmitter is not degraded by the failures. Antenna systems and methods also include antenna selection schemes for selecting a subset of antennas from a plurality of antennas to transmit to a receiver.
Abstract:
A framework for enabling a user equipment (UE) to apply interference suppression processing during network conditions that are favorable to interference suppression or that are known is provided. The framework includes an interference suppression (IS) time and frequency (time/frequency) zone, which can be scheduled by a serving base station and signaled to the UE. In an embodiment, the serving base station coordinates with the interfering base station(s) to create a network condition favorable to interference suppression at the UE during the IS time/frequency zone. In another embodiment, the serving base station opportunistically schedules the IS time/frequency zone for the UE whenever it determines favorable transmission parameters being used or scheduled for use by the interfering base station(s). The UE applies interference suppression processing within the IS time/frequency zone, thereby improving receiver performance.
Abstract:
As wireless networks evolve, network providers may utilize legacy LTE devices as well as devices that support massive multi-input, multiple output (M-MIMO). Systems and methods for simultaneously servicing legacy LTE devices and M-MIMO devices are provided. In embodiments, a transmission zone for M-MIMO communications is defined within a legacy, non M-MIMO radio frame. The location of the M-MIMO transmission zone is transmitted to user devices. For example, an identification of the location of the M-MIMO transmission zone is transmitted in a system information message. In a further example, the location of the M-MIMO transmission zone is transmitted in the downlink control information. The location of the M-MIMO transmission zone may be defined dynamically based on a variety of criteria. In addition or alternatively, a set of pre-defined transmission zones may be utilized.
Abstract:
A multiple input multiple output (MIMO) antenna system is implemented for communications in a wireless device. MIMO beamforming techniques are utilized to improve communications, and may be utilized in full-duplex mode. Techniques include the formation of beamforming patterns having orthogonal polarizations to one another at each communication device, but having matching polarization between transmit/receive pairs located at each respective communication device. Techniques also include the formation of beamforming patterns in a direction towards another communication device to maximize transmit power in that direction while inducing nulls in the beamforming pattern to reduce self-interference coupling via antennas configured for reception. Full-duplex communications are improved through monitoring of the self-interference coupling and adapting the beamforming patterns to reduce it. Beamforming vectors may be generated by solving a cost function that may include an additional constraint of reduction of self-interference coupling.
Abstract:
The present disclosure is directed to a system and method for transitioning small cell base stations out of a discontinuous transmission (DTX) mode. The system and method comprise monitoring at the small cell base stations uplink transmissions from user terminals (UTs) to a macrocell base station while the small cell base stations are in the DTX mode. The small cell base stations can use the monitored uplink transmissions to, for example, measure received power levels from the UTs and/or measure uplink path losses between the small cell base stations and the UTs. The small cell base stations can report these measured values back to the macrocell base station through a backhaul network. Based on these measurements, the macrocell base station can determine which small cell base stations can support which UTs without transitioning the small cell base stations out of the DTX mode.
Abstract:
Systems and methods for enabling a wireless backhaul network between access points (APs) in a wireless network are provided. In an embodiment, the wireless backhaul network is enabled using a Massive Multiple Input Multiple Output (MIMO) radio access technology (RAT). In another embodiment, the wireless backhaul network is established using the same RAT as used by the APs to serve user devices, and can utilize the same time and frequency resources used for user communication.
Abstract:
For an infinite number of transmit antennas at a base station (BS), matched filter (MF) precoding (a type of precoding used to perform SU-MIMO transmission) becomes optimal for performing spatial multiplexing. But observations have shown that precoding types for performing MU-MIMO transmission can perform significantly better than MF precoding for a realizable number of transmit antennas at the BS, even while using the simplest precoding types for MU-MIMO transmission. For large inter-cell interference typically encountered by user terminals (UTs) at or near the boundary of the cell served by the BS, MF precoding can still be used to eliminate or reduce the need for coordination among cells, which consumes network and back-haul resources.
Abstract:
Systems and methods for channel assignment configuration in a multiple access point (AP) environment are provided. The multiple APs can be homogeneous or heterogeneous and can implement one or more radio access technologies (RATs), including Massive Multiple Input Multiple Output (M-MIMO) RATs. A channel assignment configuration for a user equipment (UE) can identify one or more communication channels to be established to serve the UE by one or more of the APs.