Abstract:
A process for the hydroisomerization of paraffinic hydrocarbons employing a catalyst composed of a noble metal, alumina and chlorine. The catalyst is prepared by treating a composite of noble metal and alumina with an aluminum compound such as an inorganic or organic salt of aluminum, preferably aluminum nitrate, calcining the treated composite and thereafter contacting the treated composite with a conventional chloride activating agent. By treating and calcining the composite with an aluminum salt, the amount of noble metal retained on the catalyst's surface during chloride activation is maximized enabling high conversions of normal paraffins to isoparaffins to be realized.
Abstract:
A process for the hydroisomerization of paraffinic hydrocarbons employing a catalyst composed of a noble metal, alumina and chlorine. The catalyst is prepared by treating a composite of noble metal and alumina with an aluminum compound such as an inorganic or organic salt of aluminum, preferably aluminum nitrate, calcining the treated composite and thereafter contacting the treated composite with a conventional chloride activating agent. By treating and calcining the composite with an aluminum salt, the amount of noble metal retained on the catalyst's surface during chloride activation is maximized enabling high conversions of normal paraffins to isoparaffins to be realized.
Abstract:
Para-xylene may be recovered as raffinate by contacting a C-8 aromatic hydrocarbon mixture, in the presence of toluene desorbent, with a synthetic crystalline sodium aluminosilicate zeolite HP, containing pyridine in amount of at least about 3.3 wt. % of said zeolite, having a lattice constant of 25.02-25.10.ANG..
Abstract:
A process for recovering bitumen, or heavy petroleum, from admixture with sand and similar inorganic materials wherein said bitumen-sand mixture is mixed with an aqueous solution of an ammonium salt selected from ammonium sulfite, ammonium bisulfite and mixtures thereof to form a second mixture comprising said aqueous ammonium salt solution, bitumen and sand; wherein said second mixture is heated to a temperature in the range of about 120.degree. F. (45.degree. C.) to about 260.degree. F. (127.degree. C.) and is separated into a bitumen phase free of sand, an aqueous phase and a sand phase.
Abstract:
A method of and a catalyst for the conversion of petroleum distillate fractions to high heating value fuel gases suitable for use as town gas or pipeline gas by reacting a petroleum derived feedstock containing paraffins with hydrogen in the presence of a lanthanum-cobalt/Y zeolite catalyst at elevated temperature and pressure.
Abstract:
A novel crystalline zeolite composition is prepared by conducting the hydrothermal crystallization and, preferably, a preliminary aging step, at high pressure, i.e. pressures in excess of 20,000 psig (ca 138 MPa) and preferably above about 40,000 psig (ca 276 MPa megaPascals). The crystalline zeolite, designated zeolite HP, has a higher aluminum content than zeolite X and a lattice constant of above 24.94 A up to 25.10 A.
Abstract:
A novel crystalline zeolite composition is prepared by conducting the hydrothermal crystallization and, preferably, a preliminary aging step, at high pressure, i.e. pressures in excess of 20,000 psig (ca 138 MPa) and preferably above about 40,000 psig (ca 276 MPa megaPascals). The crystalline zeolite, designated zeolite HP, has a higher aluminum content than zeolite X and a lattice constant of above about 25.02 A.
Abstract:
Alkylaromatic charge hydrocarbons such as toluene are steam dealkylated in the presence of catalyst which typically contains oxides of nickel, chromium, and potassium on an activated high-purity alumina. It is a feature of this invention that the high-purity alumina is activated by calcining followed by addition thereto of alkaline earth metal such as calcium or magnesium. A test is disclosed according to which it may be determined which high-purity aluminas are suitable for use.
Abstract:
An amorphous powder useful as a precursor for the preparation of crystalline aluminosilicates is prepared by forming a sodium aluminum silicate water mixture whose composition falls within specified ranges for forming sodium zeolite A. By dehydrating the mixture with a water miscible solvent prior to aging and crystal formation, an amorphous powder is recovered for future use. Upon subsequent treatment the amorphous powder can be converted to crystalline aluminosilicates including type 3A, 4A, 5A, X and Y.
Abstract:
Alumina, derived as by-product of the Zeigler-catalyzed higher alcohol process, is converted to beta alumina trihydrate and alpha alumina trihydrate in controlled proportions and thence to the catalytic transition aluminas.