摘要:
A MEMS device includes a vent hole structure and a MEMS structure disposed on a same side of a substrate. The vent hole structure adjoins the MEMS structure with an etch stop structure therebetween. The MEMS structure includes a chamber, the vent hole structure includes a metal layer having at least a hole thereon as a vent hole to connect the chamber of the MEMS structure through the etch stop structure. Accordingly, the MEMS device has a lateral vent hole. Furthermore, as the vent hole structure and the MEMS structure are disposed on the same side of the substrate, the manufacturing process is convenient and timesaving.
摘要:
A structure of a micro-electro-mechanical systems (MEMS) electroacoustic transducer includes a substrate, a diaphragm, a silicon material layer, and a conductive pattern. The substrate includes an MEMS device region. The diaphragm has openings, and is disposed in the MEMS device region. A first cavity is formed between the diaphragm and the substrate. The silicon material layer is disposed on the diaphragm and seals the diaphragm. The conductive pattern is disposed beneath the diaphragm in the MEMS device region.
摘要:
A MEMS device includes a vent hole structure and a MEMS structure disposed on a same side of a substrate. The vent hole structure adjoins the MEMS structure with an etch stop structure therebetween. The MEMS structure includes a chamber, the vent hole structure includes a metal layer having at least a hole thereon as a vent hole to connect the chamber of the MEMS structure through the etch stop structure. Accordingly, the MEMS device has a lateral vent hole. Furthermore, as the vent hole structure and the MEMS structure are disposed on the same side of the substrate, the manufacturing process is convenient and timesaving.
摘要:
A structure of a micro-electro-mechanical systems (MEMS) electroacoustic transducer includes a substrate, a diaphragm, a silicon material layer, and a conductive pattern. The substrate includes an MEMS device region. The diaphragm has openings, and is disposed in the MEMS device region. A first cavity is formed between the diaphragm and the substrate. The silicon material layer is disposed on the diaphragm and seals the diaphragm. The conductive pattern is disposed beneath the diaphragm in the MEMS device region.
摘要:
A method for fabricating a MEMS is described as follows. A substrate is provided, including a circuit region and a MEMS region separated from each other. A first metal interconnection structure is formed on the substrate in the circuit region, and simultaneously a first dielectric structure is formed on the substrate in the MEMS region. A second metal interconnection structure is formed on the first metal interconnection structure, and simultaneously a second dielectric structure, at least two metal layers and at least one protection ring are formed on the first dielectric structure. The metal layers and the protection ring are formed in the second dielectric structure and the protection ring connects two adjacent metal layers to define an enclosed space between two adjacent metal layers. The first dielectric structure and the second dielectric structure outside the enclosed space are removed to form a MEMS device in the MEMS region.
摘要:
A method for fabricating a MEMS is described as follows. A substrate is provided, including a circuit region and an MEMS region separated from each other. A first metal interconnection structure is formed on the substrate in the circuit region, and simultaneously a first dielectric structure is formed on the substrate in the MEMS region. A second metal interconnection structure is formed on the first metal interconnection structure, and simultaneously a second dielectric structure, at least two metal layers and at least one protection ring are formed on the first dielectric structure. The metal layers and the protection ring are formed in the second dielectric structure and the protection ring connects two adjacent metal layers to define an enclosed space between two adjacent metal layers. The first dielectric structure and the second dielectric structure outside the enclosed space are removed to form an MEMS device in the MEMS region.
摘要:
A microelectromechanical system (MEMS) structure and a fabricating method thereof are described. The MEMS structure includes a fixed part and a movable part. The fixed part is disposed on and connects with a substrate. The movable part including at least two first metal layers, a first protection ring and a first dielectric layer is suspended on the substrate. The first protection ring connects two adjacent first metal layers, so as to define a first enclosed space between the two adjacent first metal layers. The first dielectric layer is disposed in the enclosed space and connects the two adjacent first metal layers.
摘要:
A microelectromechanical system (MEMS) structure and a fabricating method thereof are described. The MEMS structure includes a fixed part and a movable part. The fixed part is disposed on and connects with a substrate. The movable part including at least two first metal layers, a first protection ring and a first dielectric layer is suspended on the substrate. The first protection ring connects two adjacent first metal layers, so as to define a first enclosed space between the two adjacent first metal layers. The first dielectric layer is disposed in the enclosed space and connects the two adjacent first metal layers.
摘要:
The present invention relates to an integrated structure for a MEMS device and a semiconductor device and a method of fabricating the same, in which an etch stopping element is included on a substrate between the MEMS device and the semiconductor device for protecting the semiconductor device from lateral damage when an oxide releasing process is performed to fabricate the MEMS device. The etch stopping element has various profiles and is selectively formed by an individual fabricating process or is simultaneously formed with the semiconductor device in the same fabricating process. It is a singular structure or a combined stacked multilayered structure, for example, a plurality of rows of pillared etch-resistant material plugs, one or a plurality of wall-shaped etch-resistant material plugs, or a multilayered structure of a stack of which and an etch-resistant material layer.
摘要:
The present invention relates to an integrated structure for a MEMS device and a semiconductor device and a method of fabricating the same, in which an etch stopping device is included on a substrate between the MEMS device and the semiconductor device for protecting the semiconductor device from lateral damage when an oxide releasing process is performed to fabricate the MEMS device. The etch stopping device has various profiles and is selectively formed by an individual fabricating process or is simultaneously formed with the semiconductor device in the same fabricating process. It is a singular structure or a combined stacked multilayered structure, for example, a plurality of rows of pillared etch-resistant material plugs, one or a plurality of wall-shaped etch-resistant material plugs, or a multilayered structure of a stack of which and an etch-resistant material layer.