摘要:
What is disclosed is a system and method for selecting the optimal wavelength ban combination for a multi-band infrared camera system which is optimized for skin detection. An objective function is constructed specifically for this application from classified performance and the algorithm generates wavelengths by maximizing the objective function. A specific wavelength band combination is selected which maximizes the objective function. Also disclosed is a 3-band and 4-band camera system with filters each having a transmittance of one of a combination of wavelength bands optimized to detect skin in the infrared band. The camera systems disclosed herein find their intended uses in a wide array of vehicle occupancy detection systems and applications. Various embodiments are disclosed.
摘要:
What is disclosed is a system and method for identifying materials comprising an object captured in a video and for using the identified materials to track that object as it moves across the captured video scene. In one embodiment, a multi-spectral or hyper-spectral sensor is used to capture a spectral image of an object in an area of interest. Pixels in the spectral planes of the spectral images are analyzed to identify a material comprising objects in that area of interest. A location of each of the identified objects is provided to an imaging sensor which then proceeds to track the objects as they move through a scene. Various embodiments are disclosed.
摘要:
What is disclosed is a system and method for monitoring respiration of a subject or subject of interest using a thermal imaging system with single or multiple spectral bands set to a temperature range of a facial region of that person. Temperatures of extremities of the head and face are used to locate facial features in the captured thermal images, i.e., nose and mouth, which are associated with respiration. The RGB signals obtained from the camera are plotted to obtain a respiration pattern. From the respiration pattern, a rate of respiration is obtained. The system includes display and communication interfaces wherein alerts can be activated if the respiration rate falls outside a level of acceptability. The teachings hereof find their uses in an array of devices such as, for example, devices which monitor the respiration of an infant to signal the onset of a respiratory problem or failure.
摘要:
What is disclosed is a video-based system and method for estimating heart rate variability from time-series signals generated from video images captured of a subject of interest being monitored for cardiac function. In a manner more fully disclosed herein, low frequency and high frequency components are extracted from a time-series signal obtained by processing a video of the subject being monitored. A ratio of the low and high frequency of the integrated power spectrum within these components is computed. Analysis of the dynamics of this ratio over time is used to estimate heart rate variability. The teachings hereof can be used in a continuous monitoring mode with a relatively high degree of measurement accuracy and find their uses in a variety of diverse applications such as, for instance, emergency rooms, cardiac intensive care units, neonatal intensive care units, and various telemedicine applications.
摘要:
What is disclosed is system and method for contemporaneously reconstructing images of a scene illuminated with unstructured and structured illumination sources. In one embodiment, the system comprises capturing a first 2D image containing energy reflected from a scene being illuminated by a structured illumination source and a second 2D image containing energy reflected from the scene being illuminated by an unstructured illumination source. A controller effectuates a manipulation of the structured and unstructured illumination sources during capture of the video. A processor is configured to execute machine readable program instructions enabling the controller to manipulate the illumination sources, and for effectuating the contemporaneous reconstruction of a 2D intensity map of the scene using the second 2D image and of a 3D surface map of the scene using the first 2D image. The reconstruction is effectuated by manipulating the illumination sources.
摘要:
What is disclosed is a computationally efficient system and method for estimating a subject's cardiac pulse rate from multi-channel source video data. In one embodiment, A time-series signal is continuously processed by repeatedly: (1) conditioning the estimated source signal obtained on a previous iteration to produce a next reference signal; (2) using this reference signal to perform constrained source separation on this next segment to obtain an estimated source signal. A frequency at which this next estimated source signal converged is the subject's estimated cardiac pulse rate for this signal segment. The reference signal is repeatedly updated. Upon convergence, the sliding window is shifted to define a next segment of the time-series signal. The method repeats for each time-series signal segment on a continuous basis or until a termination criteria is met. In such a manner, the subject's cardiac pulse rate is estimated from video data on a continuous basis.
摘要:
What is disclosed is a non-contact system and method for determining cardiac function parameters from a vascular pattern identified from RGB and IR video signals captured simultaneously of a region of exposed skin of a subject of interest. In one embodiment, a video of a region of exposed skin is captured using a video camera that captures color values for pixels over visible channels and an IR camera that measures pixel intensity values in wavelength ranges of interest. Pixel intensity values are processed to generate a vascular binary mask that indicates pixel locations corresponding to the vascular pathways. The IR images are registered with corresponding data from the camera's visible channels such that pixels that correspond to the vascular pattern can be isolated in each frame of the video of visible color data. Once processed, pixels associated with the isolated vascular patterns are analyzed to determine desired cardiac function parameters.
摘要:
What is disclosed is a system and method for estimating minute ventilation by analyzing distortions in reflections of structured illumination patterns captured in a video of a thoracic region of a subject of interest being monitored for respiratory function. Measurement readings can be acquired in a few seconds under a diverse set of lighting conditions and provide a non-contact approach to patient respiratory function that is particularly useful for infant care in an intensive care unit (ICU), sleep studies, and can aid in the early detection of sudden deterioration of physiological conditions due to detectable changes in patient chest volume. The systems and methods disclosed herein provide an effective tool for minute ventilation estimation and respiratory function study and analysis in a non-contact remote sensing environment.
摘要:
What is disclosed is a system and method for image-based determination of carbon dioxide (CO2) concentration in exhaled breath. In one embodiment, an image of the exhaled airstream of a subject of interest is received. The image is captured using a mid-wave infrared camera system having an optical filter tuned to the infrared absorption band of CO2. The image is preprocessed to isolate a region of pixels containing the exhaled airstream and intensity values of pixels in the identified region are normalized by a value of a known radiance such as that of the subject's nose or face. The image is analyzed to determine CO2 concentration levels of the exhaled airstream using a calibration curve which relates pixel intensity to CO2 concentrations. The calibration curve is derived using a physics-based parameterized model. The CO2 concentration levels are determined and communicated to a computer workstation. Various embodiments are disclosed.
摘要:
What is disclosed is a system and method for automatically removing undesirable periodic or random background noise from heart rate measurement signals obtained from a video camera, ambient illuminator and other unknown electromagnetic sources to improve the overall reliability of biomedical measurements. In one embodiment, a time varying video image acquired over at least one imaging channel of a subject of interest is received. The video images are then segmented into a first region comprising a localized area where plethysmographic signals of the subject can be registered and a second region comprising a localized area of the environment where the plethysmographic signals cannot be registered. Both of the regions are exposed to the same environmental factors. The segmented video signals are pre-processed and the processed signals are subtracted from each other to generate an environmentally compensated signal. The environmentally compensated signal is then communicated to a computer system.