摘要:
A microstructured optical waveguide is formed to include a periodic sequence of “plugs” of optically active material within the inner cladding air tunnels. The plugs are utilized as a grating structure for generating resonant and periodic structures. The waveguide (in one embodiment, an optical fiber) is tunable by changing the spacing of the plugs (e.g., heating the structure, changing the pressure within the structure, etc.), or by modifying the initial spacing of the plugs during the formation of the microstructured optical waveguide (i.e., by modifying the “dipping frequency” of the waveguide into a reservoir of optically active material). In general, any number of different types of optically active material may be used to form the plugs, where two or more different materials may be used in the same structure, and introduced in an alternating fashion.
摘要:
Embodiments of the invention include an optical fiber device such as a modulator, variable attenuator or tunable filter including an optical fiber having a core region, a cladding layer around the core region, and a controllable active material disposed in, e.g., capillaries or rings formed the cladding layer. The active materials include, e.g., electro-optic material, magneto-optic material, photorefractive material, thermo-optic material and/or materials such as laser dyes that provide tunable gain or loss. The application of, e.g., temperature, light or an electric or magnetic field varies optical properties of the active material, which, in turn, varies or affects the propagation properties of optical signals in the device. The optical device includes a tapered region that causes the core mode to spread into the cladding region and, simultaneously, allows the active material to be relatively close to the propagated modes, thus allowing interaction between the active material and the propagating modes.
摘要:
Embodiments of the invention include an optical fiber device such as a tunable birefringent optical fiber having a core region, a cladding layer therearound, and a controllable active material disposed in, e.g., selective capillaries or pockets formed in the cladding layer. The active materials include, e.g., electro-optic material, magneto-optic material, photorefractive material, thermo-optic material and/or materials such as laser dyes that provide tunable gain or loss. The application of, e.g., temperature, light or an electric or magnetic field varies optical properties of the active material, which, in turn, varies or affects the propagation properties of optical signals in the device. The optical device can include a tapered region or long period grating that causes the core mode to spread or couple into the cladding region and, simultaneously, allows the active material to be relatively close to the propagated modes, thus allowing interaction between the active material and the propagating modes.
摘要:
In accordance with an embodiment of the invention, there is provided a device and method for detecting an amyloid protein in an eye of a mammal. A method comprises illuminating the eye with a light source having at least one of a wavelength property, a polarization property or a combination thereof, each appropriate to produce fluorescence in at least an amyloid-binding compound when the amyloid-binding compound is bound to the amyloid protein, the amyloid-binding compound having been introduced to the eye and specifically binding to the amyloid protein indicative of the amyloidogenic disorder; and determining a time decay rate of fluorescence for at least the fluorescence produced by the amyloid-binding compound bound to the amyloid protein, the determining permitting distinguishing of the presence of the amyloid-binding compound bound to the amyloid protein in the eye based on at least the time decay rate.
摘要:
An optical device including a microstructured fiber pumped by an external pulsed-light source. In one embodiment, the microstructured fiber includes two waist regions functioning as a tunable attenuator and a wavelength shifter, respectively. Output wavelength of the optical device is selected by attenuating the pump light in the first waist region and then passing the light through the second waist region to shift the pump energy to a new spectral band. An optical device of the invention configured with two or more microstructured fibers generates two or more synchronized pulsed beams, each at a different characteristic wavelength. Certain embodiments of the invention provide an inexpensive, compact, energy-efficient multi-wavelength synchronized pulsed-light source.
摘要:
In accordance with an embodiment of the invention, there is provided a device and method for detecting an amyloid protein in an eye of a mammal. A method comprises illuminating the eye with a light source having at least one of a wavelength property, a polarization property or a combination thereof, each appropriate to produce fluorescence in at least an amyloid-binding compound when the amyloid-binding compound is bound to the amyloid protein, the amyloid-binding compound having been introduced to the eye and specifically binding to the amyloid protein indicative of the amyloidogenic disorder; and determining a time decay rate of fluorescence for at least the fluorescence produced by the amyloid-binding compound bound to the amyloid protein, the determining permitting distinguishing of the presence of the amyloid-binding compound bound to the amyloid protein in the eye based on at least the time decay rate.
摘要:
A tunable optical fiber device comprises a length of fiber having a core having a certain refractive index; a cladding peripherally surrounding the core with a refractive index less than the refractive index of the core; and at least one hollow region disposed within the cladding in proximity to the core or within the core itself. Fluid (typically liquid) controllably moved within the hollow region modifies the effective index of the fiber and thereby tunes its characteristics.