摘要:
A low temperature alkaline fuel cell having a hydrogen electrode and an oxygen electrode, both of which are comprised of high performance non-precious metal catalytic materials providing high performance at low temperatures.
摘要:
An industrial catalyst having: a support; a plurality of metallic particulates distributed throughout the support; and a metal at least partially covering the surface of the support. A method for making a catalyst including the steps of: forming a support with non-noble metal particulates distributed throughout the support; and at least partially covering the surface of the support with a metal.
摘要:
An electrochemical hydrogen storage alloy including an oxide surface having metallic catalytic particles distributed throughout, wherein said metallic catalytic particles have an average particle size of 10-40 Angstroms in size.
摘要:
An industrial catalyst having: a support; a plurality of metallic particulates distributed throughout the support; and a metal at least partially covering the surface of the support.A method for making a catalyst including the steps of: forming a support with non-noble metal particulates distributed throughout the support; and at least partially covering the surface of the support with a metal.
摘要:
A low temperature alkaline fuel cell having a hydrogen electrode and an oxygen electrode, both of which are comprised of high performance non-precious metal catalytic materials providing high performance at low temperatures.
摘要:
A hydrogen storage alloy having an atomically engineered microstructure that both physically and chemically absorbs hydrogen. The atomically engineered microstructure has a predominant volume of a first microstructure which provides for chemically absorbed hydrogen and a volume of a second microstructure which provides for physically absorbed hydrogen. The volume of the second microstructure may be at least 5 volume % of atomically engineered microstructure. The atomically engineered microstructure may include porous micro-tubes in which the porosity of the micro-tubes physically absorbs hydrogen. The micro-tubes may be at least 5 volume % of the atomically engineered microstructure. The micro-tubes may provide proton conduction channels within the bulk of the hydrogen storage alloy and the proton conduction channels may be at least 5 volume % of the atomically engineered microstructure.
摘要:
A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.
摘要:
A method of making a catalyst. The method comprises the step of leaching alloy particles. Preferably, the alloy particles are hydrogen storage alloy particles.
摘要:
A modified A2B7 type hydrogen storage alloy having reduced hysteresis. The alloy consists of a base AxBy hydrogen storage alloy, where A includes at least one rare earth element and also includes magnesium, B includes at least nickel, and the atomic ratio of x to y is between 1:2 and 1:5. The base alloy is modified by the addition of at least one modifier element which has an atomic volume less than about 8 cm3/mole, and is added to the base alloy in an amount sufficient to reduce the absorption/desorption hysteresis of the alloy by at least 10% when compared with the base alloy.
摘要翻译:具有降低的滞后的改性的A 2 N 2 B 7型储氢合金。 该合金由一种碱金属的储氢合金组成,其中A包括至少一种稀土元素,并且还包括镁,B至少包括镍,和 x与y的原子比为1:2与1:5之间。 通过添加至少一种具有小于约8cm 3 / mole的原子体积的改性剂元素来改变基础合金,并且以足以减少吸收的量加入到基础合金中 /解吸滞后与基础合金相比至少10%。
摘要:
A fuel cell. The anode of the fuel cell comprises a hydrogen oxidation catalyst comprising a finely divided metal particulate. The metal particulate may be a nickel and/or nickel alloy particulate having a particle size less than about 100 Angstroms.