Hydrogen storage alloys having a high porosity surface layer
    6.
    发明授权
    Hydrogen storage alloys having a high porosity surface layer 有权
    具有高孔隙率表面层的储氢合金

    公开(公告)号:US06830725B2

    公开(公告)日:2004-12-14

    申请号:US10405008

    申请日:2003-04-01

    IPC分类号: C22C3000

    摘要: Electrochemical and thermal hydrogen storage alloy compositions that provide superior performance, including an electrochemical hydrogen storage alloy that provides superior low temperature discharge characteristics. The alloy compositions include microstructures in the interface region that are highly porous and that include catalytic metallic particles. The microstructures include a large volume fraction of voids having spherical or channel-like shapes and are sufficiently open structurally to facilitate greater mobility of reactive species within the microstructure and in the vicinity of catalytic metallic particles. Greater accessibility to reactive sites accordingly results. The greater mobility of reactive species and/or the greater density of catalytic particles lead to faster kinetics and improved performance (e.g. higher power), especially at low operating temperatures. The microstructures may be formed through inclusion of a microstructure tuning element in the alloy composition, through control of processing conditions and/or through inclusion of etching steps in the post-formation processing of hydrogen storage alloys.

    摘要翻译: 提供优异性能的电化学和热储氢合金组合物,包括提供优异的低温放电特性的电化学储氢合金。 合金组合物包括界面区域中的高度多孔的微结构,并且包括催化金属颗粒。 微结构包括具有球形或通道状形状的大体积分数的空隙,并且在结构上足够开放以促进反应性物质在微结构内和催化金属颗粒附近的更大迁移率。 因此可以更好地获得反应性网站。 活性物质的较大迁移率和/或更大密度的催化剂颗粒导致更快的动力学和改进的性能(例如更高的功率),特别是在低的操作温度下。 可以通过在合金组合物中包含微结构调谐元件,通过控制加工条件和/或通过在储氢合金的后形成处理中包括蚀刻步骤来形成微观结构。

    Base-facilitated production of hydrogen from carbonaceous matter
    9.
    发明授权
    Base-facilitated production of hydrogen from carbonaceous matter 失效
    从碳质物质中促进碱的生产

    公开(公告)号:US07588676B2

    公开(公告)日:2009-09-15

    申请号:US10984202

    申请日:2004-11-10

    IPC分类号: C25B1/02 C01B3/02

    摘要: A base-facilitated process for producing hydrogen. Hydrogen is produced from a reaction of carbonaceous matter with a base and water, preferably through the formation of a bicarbonate or carbonate by-product. The base-facilitated hydrogen-producing reactions are thermodynamically more spontaneous and are able to produce hydrogen gas at less extreme reaction conditions than conventional reformation or gasification reactions of carbonaceous matter. In another embodiment, the instant reactions permit the production of hydrogen from carbonaceous matter without the production of carbon dioxide or carbon monoxide. In a preferred embodiment, the carbonaceous matter is coal or a derivative thereof.

    摘要翻译: 用于生产氢的碱基方法。 氢由碳质物质与碱和水的反应产生,优选通过形成碳酸氢盐或碳酸盐副产物。 碱促进的产氢反应在热力学上更自发,并且能够在比碳质物质的常规改性或气化反应更不极端的反应条件下产生氢气。 在另一个实施方案中,本反应允许从碳质物质产生氢气而不产生二氧化碳或一氧化碳。 在优选的实施方案中,碳质物质是煤或其衍生物。

    Carbonate recycling in a hydrogen producing reaction

    公开(公告)号:US06994839B2

    公开(公告)日:2006-02-07

    申请号:US10636093

    申请日:2003-08-07

    IPC分类号: C01B3/24 C01B3/22

    摘要: A process for producing hydrogen gas from a reaction of an organic substance and a base with a recycling of a carbonate or bicarbonate by-product and a regeneration of the base. In one embodiment, reaction of an organic substance and a base produces hydrogen gas and a metal carbonate. The instant invention provides recycling of the metal carbonate by-product. In a preferred embodiment, the metal carbonate by-product is soluble and recycling includes a three step process. In a first step, the soluble metal carbonate is reacted with a metal hydroxide to form a weakly soluble or insoluble metal carbonate that precipitates in a metathesis reaction. The metal hydroxide reactant of the hydrogen producing reaction is also formed in the metathesis reaction and remains in solution. Precipitation of the carbonate thus permits ready isolation of the carbonate by-product, while leaving behind an aqueous metal hydroxide phase that can be returned to and further utilized in the hydrogen producing reaction. The metal carbonate precipitate of the metathesis reaction is thermally decomposed to form a metal oxide solid in a second step. In a third step, the metal oxide is reacted with water to reform the metal hydroxide reactant of the metathesis reaction. The hydrogen producing reaction and recycling process are sustainable in that the metal hydroxide reactant of each reactant is regenerated in the recycling process. In an alternative embodiment, the hydrogen producing reaction produces a metal carbonate precipitate directly and recycling occurs through thermal decomposition of the metal carbonate to form a metal oxide followed by reaction of the metal oxide with water to reform the metal hydroxide employed in the hydrogen producing reaction. In yet another embodiment, a bicarbonate by-product is formed by a hydrogen producing reaction of an organic substance and a base and bicarbonate recovery occurs by heating the bicarbonate to form a carbonate and recycling according to the instant carbonate recycling process.