摘要:
The present invention provides a spectroscopic system as well as a method of autonomous tuning of a spectroscopic system and a corresponding computer program product. By detecting the position of return radiation in a transverse plane of an aperture of a spectroscopic analysis unit, a control signal can be generated that allows to drive servo driven translation or tilting stages of optical components. In this way a transverse misalignment of a spectroscopic system can be effectively detected. Generally, a plurality of different detection schemes are realizable allowing for an autonomous tuning of the spectroscopic system and for autonomous elimination of misalignment of a spectroscopic system.
摘要:
The present invention provides an efficient approach of attaching and fixing a measurement head for a spectroscopic system to a variety of different parts of the skin of a patient. The measurement head preferably features a compact design providing a flexible handling and offering a huge variety of application areas taking into account the plurality of properties of various portions of the skin. Furthermore, the measurement head features a robust and uncomplicated optical design not requiring a lateral shifting of the optical axis of the objective. Such transverse relative movements between the objective and a capillary vessel in the skin are preferably performed by mechanically shifting the skin with respect to the objective of the measurement head. Moreover, the measurement head is adapted to host one or more pressure sensors measuring the contact pressure between the measurement head and the skin. This pressure information can further be exploited in order to calibrate the spectroscopic analysis means, to regulate the contact pressure within predefined margins specifying an optimum range of contact pressure for spectroscopic examination of capillary vessels.
摘要:
A spectroscopic system for determining a property of a fluid flowing through a volume of interest underneath the surface of the skin of a patient is described. The spectroscopic system comprises: a probe head having an objective for directing an excitation beam into the volume of interest and for collecting return radiation from the volume of interest; a base station having a spectroscopic analysis unit and a power supply; and a cable connecting the probe head and the base station for transmission of the return radiation from the probe head to the base station and for providing the probe head with power from the power supply of the base station.
摘要:
The present invention provides a spectroscopic system as well as a method of autonomous tuning of a spectroscopic system and a corresponding computer program product. By detecting the position of return radiation in a transverse plane of an aperture of a spectroscopic analysis unit, a control signal can be generated that allows to drive servo driven translation or tilting stages of optical components. In this way a transverse misalignment of a spectroscopic system can be effectively detected. Generally, a plurality of different detection schemes are realizable allowing for an autonomous, tuning of the spectroscopic system and for autonomous elimination of misalignment of a spectroscopic system.
摘要:
The present invention provides a protection mechanism for a spectroscopic analysis system being adapted to determine a property of a biological structure in a volume of interest of a patient. The spectroscopic system preferably makes use of high power radiation, and provides a protection mechanism for preventing an accidental exposure of light sensitive tissue of a body. The invention provides a variety of approaches to detect whether a measurement head of the spectroscopic system is in a measurement position. The measurement position of the measurement head can effectively be determined by making use of e.g. a pressure sensor, a sensor measuring the electric resistance of the skin of the patient, or even by optical means analyzing the intensity or the spatial structure of a monitoring beam providing a visual image of the volume of interest.
摘要:
An autofocus mechanism for a spectroscopic system determines a time varying optical property of a volume of interest. The mechanism measures the fluctuations of the optical property of the volume of interest for determining the position of the volume of interest. The spectroscopic system focuses an excitation beam into the determined volume of interest and collects return radiation emanating from the volume of interest for spectroscopic analysis. Preferably, inelastically scattered radiation of an excitation beam is separated from elastically scattered radiation for spectroscopic analysis. The elastically scattered radiation of the excitation beam is measured for fluctuations of the optical property of the volume of interest. A control loop maximizes the amplitude and/or intensity of the fluctuations and specifies the position of a volume of interest e.g. the center of a capillary vessel.
摘要:
A measurement head has an objective for imaging of a target area such as including a capillary vessel in the skin. The measurement head does not require a lateral shifting of the optical axis of the objective. Transverse relative movements between the objective and a capillary vessel in the skin are performed by mechanically shifting the skin with respect to the objective of the measurement head. Moreover, the measurement head is adapted to host one or more pressure sensors for measuring the contact pressure between the measurement head and the skin. Pressure information may be exploited in order to calibrate a spectroscopic analyzer, and/or to regulate the contact pressure within predefined margins specifying an optimum range of contact pressure for spectroscopic examination of capillary vessels.
摘要:
A spectroscopic system which determines a property of a biological structure in a volume of interest of a person includes a low cost objective lens for directing an excitation beam into a volume of interest and for collecting return radiation from the volume of interest. After detection of the return radiation and generation of spectroscopic signals, a correction unit performs a compensation for aberrations of the spectroscopic signals introduced by the low cost objective lens. Since the aberrations of the objective lens strongly depend on the lateral distance of the volume of interest from the optical axis of the objective lens, the correction unit uses a correction table providing an assignment between correction values and various lateral positions of the volume of interest.
摘要:
The optical analysis system (20) for determining an amplitude of a principal component of an optical signal comprises a multivariate optical element (10) for reflecting the optical signal and thereby weighing the optical signal by a spectral weighing function, and a detector (9, 9P, 9N) for detecting the weighed optical signal. The optical analysis system (20) may further comprise a dispersive element (2) for spectrally dispersing the optical signal, the multivariate optical element being arranged to receive the dispersed optical signal. The blood analysis system (40) comprises the optical analysis system (20) according to the invention.
摘要:
An optical detection method is provided, wherein a body part (5) comprising at least one joint is irradiated with light. Local attenuation of the light by the body part (5) is detected as attenuation measurements (2) at the position of the at least one joint and at the position of at least one other portion of the body part (5); and wherein blood flow to and/or from the body part (5) is temporarily at least partially blocked and thereafter enabled again (3). Distinct local attenuation measurements for the at least one joint and for at least one other portion of the body part (5) are performed for at least two of the times before (I), during (II), and after (III) the blocking of blood flow.