摘要:
A process for the preparation of toner generated by mixing (1) a colorant dispersion preferably containing a nonionic surfactant, and (2) a latex emulsion, and wherein the latex emulsion preferably contains resin, or polymer and a surfactant, and wherein the colorant nonionic surfactant is of the Formulas (I) or (II), or optionally mixtures thereof ##STR1## wherein R.sup.1 is a hydrophobic aliphatic, or hydrophobic aromatic group; R.sup.2 is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, and alkylarylalkyl; R.sup.3 is hydrogen or alkyl; A is a hydrophilic polymer chain, and m represents the number of A segments.
摘要:
A process for the preparation of toner comprising mixing a colorant containing a surfactant and a latex emulsion, and wherein the latex emulsion contains resin and a nonionic hydrolyzable surfactant, and wherein said surfactant is of the Formulas (I) or (II), or optionally mixtures thereof ##STR1## wherein R.sup.1 is a hydrophobic aliphatic, or hydrophobic aromatic group; R.sup.2 is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, and alkylarylalkyl; R.sup.3 is hydrogen or alkyl; A is a hydrophilic polymer chain, and m represents the number of A segments; heating below about the resin latex glass transition temperature, followed by the addition of an anionic stabilizer, thereafter heating above about the resin glass transition temperature, and adjusting the pH of the resulting mixture of resin and colorant particles suspended in an aqueous phase containing anionic surfactant, cationic surfactant and nonionic hydrolyzable surfactant, wherein said pH is increased from about 1.7 to about 2.5 to about 6 to about 12 by adding a base during the heating above about said resin glass transition temperature wherein coalescence is being accomplished.
摘要:
A process for the preparation of toner by mixing a colorant dispersion and a latex emulsion, and wherein the latex emulsion contains resin and a surfactant, wherein the surfactant is, for example, of the Formulas (I) or (II) ##STR1## wherein R.sup.1 is a hydrophobic aliphatic, or hydrophobic aromatic group; R.sup.2 is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, and alkylarylalkyl; R.sup.3 is hydrogen or alkyl; A is a hydrophilic polymer, and m represents the number of A segments.
摘要:
Disclosed is a liquid developer comprising a liquid medium, a charge control agent, a polymeric surfactant, and a colored core polymer. In one embodiment, the colored polymer is of the formula ##STR1## wherein A is selected from the group consisting of alkylene and arylene, B is selected from the group consisting of ##STR2## wherein R is selected from the group consisting of alkylene groups, arylene groups, and polyether groups, D is selected from the group consisting of dioxyalkane and dioxyarene, x is a fraction number of from about 0.01 to 1.0, and y is a fraction number of from 0 to about 0.99, with x+y being equal to 1, and n representing the number of the monomer units.
摘要:
An electronic device including in any sequence: (a) a semiconductor layer; and (b) a phase-separated dielectric structure comprising a lower-k dielectric polymer and a higher-k dielectric polymer, wherein the lower-k dielectric polymer is in a higher concentration than the higher-k dielectric polymer in a region of the dielectric structure closest to the semiconductor layer.
摘要:
A process for fabricating an electronic device including: depositing a layer comprising a semiconductor; liquid depositing a dielectric composition comprising a lower-k dielectric material, a higher-k dielectric material, and a liquid, wherein the lower-k dielectric material and the higher-k dielectric material are not phase separated prior to the liquid depositing; and causing phase separation of the lower-k dielectric material and the higher-k dielectric material to form a phase-separated dielectric structure wherein the lower-k dielectric material is in a higher concentration than the higher-k dielectric material in a region of the dielectric structure closest to the layer comprising the semiconductor, wherein the depositing the layer comprising the semiconductor is prior to the liquid depositing the dielectric composition or subsequent to the causing phase separation.
摘要:
Disclosed is an item, for example a document, including a substrate having thereon a multiplicity of separate printed markings, wherein the printed markings include both conductive printed markings and substantially non-conductive printed markings. The different conductive and substantially non-conductive regions on the substrate can be detected, for example by measuring the resistance or current of each printed marking. The pattern of different conductive and substantially non-conductive regions can be used as a security pattern of authenticity that cannot be replicated by standard office equipment, and/or can be used to encrypt information in binary code form in the item. A system for forming and detecting the different printed markings is also described.
摘要:
A photoconductive imaging member comprised of a supporting substrate, a hole blocking layer thereover, a photogenerating layer and a charge transport layer, and wherein the hole blocking layer is comprised of a metal oxide prepared by a sol-gel process.
摘要:
Disclosed is an item, for example a document, including a substrate having thereon a multiplicity of separate printed markings, wherein the printed markings include both conductive printed markings and substantially non-conductive printed markings. The different conductive and substantially non-conductive regions on the substrate can be detected, for example by measuring the resistance or current of each printed marking. The pattern of different conductive and substantially non-conductive regions can be used as a security pattern of authenticity that cannot be replicated by standard office equipment, and/or can be used to encrypt information in binary code form in the item. A system for forming and detecting the different printed markings is also described.
摘要:
A thin-film transistor, such as a top-gate thin-film transistor, is provided herein. The thin-film transistor has a performance-enhancing layer, such as a performance-enhancing bottom layer, comprising a polymer other than a polyimide. In specific embodiments, the polymer is selected from the group consisting of polysiloxane, polysilsesquioxane, and mixtures thereof. In other embodiments, it is a self-assembling polymeric monolayer of a silane agent and an organophosphonic acid. The performance-enhancing layer directly contacts the substrate. The layer improves the carrier mobility and current on/off ratio of the thin film transistor.