Abstract:
A accelerometer includes a base, a pair of fixed sensing blocks anchored to the base, a plurality of elastic linkages connected to the base, and a movable sensing block sandwiched between the pair of fixed sensing blocks and suspended in the base by the elastic linkages for moving either along a first or a second axes or shifting along a third axes. Each fixed sensing block defines four fixed sensing sections and each fixed sensing section sets in space with respect to the other fixed sensing sections. A projection of each fixed sensing section along a third axes exceeds the movable sensing block in a direction of the first and second axis, respectively.
Abstract:
A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
Abstract:
A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
Abstract:
A quick assembly and disassembly structure of a toilet seat base, including a supporting base, base boards, lid bodies, and axial hole portions and connecting portions on the supporting base; each connecting portion is provided with a sliding groove; each base board is slidable back and forth within a corresponding sliding groove and non-movable vertically within the corresponding sliding groove; one end of each lid body is pivotally connected with a corresponding connecting portion; a bottom surface of each lid body is provided with positioning ribs; a top surface of each connecting portion is provided with positioning holes; the positioning holes of each connecting portion are in communication to a corresponding sliding groove. When each lid body is closed, the positioning ribs pass through the positioning holes and fit with the positioning grooves, so that each base board and a corresponding sliding groove are fixed.
Abstract:
A novel toilet seat structure, including a supporting base, a toilet seat, fixing blocks and two first buffered-descent modules; the toilet seat includes a child seat that has a child seat body and a first decorative lid; a rear end of the child seat body is provided with a shaft portion including first shaft sleeves and a sliding groove; the first decorative lid is detachably fitted with an opening part of the sliding groove; two ends of the supporting base are provided with second shaft sleeves respectively; a fixing block is embedded inside and being limited from rotating circumferentially in each second shaft sleeve; each first buffered-descent module is embedded inside the shaft portion through the sliding groove, and then passes through a corresponding first shaft sleeve and is then connected to a corresponding fixing block.
Abstract:
A method for forming silicide contacts includes forming a dielectric layer on a gate spacer, a gate stack, and a first semiconductor layer. The first semiconductor layer comprises source/drain regions. Contact trenches are formed in the dielectric layer so as to expose at least a portion of the source/drain regions. A second semiconductor layer is formed within the contact trenches. A metallic layer is formed on the second semiconductor layer. An anneal is performed to form a silicide region between the second semiconductor layer and the metallic layer. A conductive contact layer is formed on the metallic layer or the silicide region.
Abstract:
Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
Abstract:
A diaphragm is disclosed. The diaphragm includes a vibrating member, a projection extruding from a periphery of the vibrating member, a supporting member surrounding the vibrating member. A first gap is formed between the vibrating member and the supporting member. The supporting member includes a supporting girder surrounding and separated from the projection. A torsion girder is connected to the projection and a fixing girder is parallel to the torsion girder. A second gap is defined between the fixing girder and the torsion girder.
Abstract:
Disclosed is a diaphragm includes a vibrating member, a plurality of supporting members extending from a periphery of the vibrating member along a direction away from a center of the diaphragm, and a plurality of separating portions each located between two adjacent supporting members. Each of the supporting members defines a first beam, a second beam, and at least one slit between the first and second beams.