Abstract:
Provided is a fusion protein comprising circularly permuted form of TRAIL, and the fusion protein contains circularly permuted form of TRAIL and oligopeptides located at the N-terminus and/or C-terminus of the permuted form. The oligopeptides contain a repeating sequence consisting of 3-10 histidines. The components of the circularly permuted form of TRAIL from N-terminus to C-terminus are: (a) amino acids 135-281 of TRAIL, (b) a linker, and (c) amino acids 121-135 of TRAIL or amino acids 114-135 of TRAIL or amino acids 95-135 of TRAIL or any fragments of amino acids 95-135 of TRAIL containing amino acids 121-135 of TRAIL. Also provided is a method for treating cancer by using the fusion protein.
Abstract:
The present invention discloses a recombinant protein having an anti-cancer effect, its encoding gene and uses thereof. The recombinant protein having an anti-cancer effect provided by the present invention is one selected from the group consisting of: 1) a protein having the amino acid sequence of SEQ ID No:2 shown in the sequence listing; 2) a protein derived from SEQ ID No:2, which has a sequence homology of more than 90% with SEQ ID No:2 and which has the same activity as that of SEQ ID No:2; 3) a protein derived from SEQ ID No:2, which is obtained by adding or deleting 15 or less amino acid residues at the N-terminus of the amino acid sequence of SEQ ID No:2, and which has the same activity as that of SEQ ID No:2; 4) a protein derived from SEQ ID No:2, which is obtained by adding or deleting 15 or less amino acid residues at the C-terminus of the amino acid sequence of SEQ ID No:2, and which has the same activity as that of SEQ ID No:2; 5) a protein derived from SEQ ID No:2, which is obtained by substitution, deletion, or addition of one or several amino acid residues in the amino acid sequence of SEQ ID No:2, and which has the same activity as that of SEQ ID No:2. The medicament containing above recombinant protein as active component has significant selective inhibitory effect on tumor cells, and does not induce apoptosis of normal tissue cells, and has important applicable value.
Abstract translation:本发明公开了具有抗癌作用的重组蛋白,其编码基因及其用途。 本发明提供的具有抗癌效果的重组蛋白质选自:1)具有序列表所示的SEQ ID No:2的氨基酸序列的蛋白质; 2)衍生自SEQ ID No:2的蛋白质,其与SEQ ID No:2具有大于90%的序列同源性,并且具有与SEQ ID No:2具有相同的活性; 3)衍生自SEQ ID No:2的蛋白质,其通过在SEQ ID No:2的氨基酸序列的N末端添加或缺失15个或更少的氨基酸残基而获得,并且具有与该序列具有相同的活性 SEQ ID No:2; 4)衍生自SEQ ID No:2的蛋白质,其通过在SEQ ID No:2的氨基酸序列的C末端添加或缺失15个或更少的氨基酸残基获得,并且具有与SEQ ID No:2具有相同的活性 SEQ ID No:2; 5)衍生自SEQ ID No:2的蛋白质,其通过在SEQ ID No:2的氨基酸序列中的一个或几个氨基酸残基的取代,缺失或添加获得,并且具有与 SEQ ID No:2。 含有上述重组蛋白作为活性成分的药物对肿瘤细胞具有显着的选择性抑制作用,不诱导正常组织细胞凋亡,具有重要的适用价值。
Abstract:
A method and apparatus for transporting radiopharmaceuticals. Typically, the apparatus is a two-part assembly, each part having an exterior shell, a radiation shield and a non-porous lining. Additionally, the assembled apparatus has a sealed internal chamber suitable for carrying a syringe or a sharps container containing a syringe. The internal chamber of the radiopharmaceutical pig is lined with a non-porous lining, typically a durable plastic, that prevents contamination of the radiopharmaceutical doses, the radiation shield, or the environment. Additionally, the non-porous lining can be quickly and easily cleaned and sterilized, avoiding the often difficult, to impossible, task of cleaning and sterilizing the radiation shield of the radiopharmaceutical pig. The non-porous lining is surrounded by a radiation shield that is typically comprised of elemental lead. The radiation shield prevents radiation from the radiopharmaceutical from contaminating the user or environment. The radiation shield is surrounded by an exterior shell that absorbs impact and prevents the radiopharmaceutical pig from breaking. Additionally, the exterior shell prevents environmental exposure to the potentially hazardous material of the radiation shield. Generally, a method of transporting a radiopharmaceutical by filling the container with a radiopharmaceutical, inserting the container into the internal chamber of the radiopharmaceutical pig having a non-porous lining, and assembling the radiopharmaceutical pig so the that the container is in the internal chamber and is encapsulated by the radiation shield, is also provided.
Abstract:
A method, device and system disclosed used in storage technique, comprising: splitting a file of size M into k blocks, that is to say, each block is of size M/k; issuing the above k blocks across k different storage nodes in the distributed network storage system in a distributed manner; using the k blocks, constructing n−k independent blocks via linear coding method, and satisfying the property that any k of the n encoded blocks can be used to reconstruct the original data in the file, which means the linear coding method is a kind of Maximum-Distance Separable (MDS) code; distribute the n−k encoded blocks to the rest n−k different storage codes in the distributed network storage systems.
Abstract:
Methods and apparatus are disclosed to capture error conditions in lightweight virtual machine managers. A disclosed example method includes defining a shared memory structure between the VMM and a virtual machine (VM), when the VM is spawned by the VMM, installing an abort handler on the VM associated with a vector value, in response to detecting an error, transferring VMM state information to the shared memory structure, and invoking the abort handler on the VM to transfer contents of the shared memory structure to a non-volatile memory.
Abstract:
The invention described here is the methods of using a hardware-based functional verification system to mimic a design under test (DUT), under intended application environment and software, to record or derive the transition activities of all circuits of the DUT, then calculate the total or partial power consumption during the period of interest. The period of interest is defined by the user in terms of “events” which are the arbitrary states of the DUT. Furthermore, the user can specify the number of sub-divisions required between events thus vary the apparent resolution of the power consumption profile.
Abstract:
Cardiac activity is sensed over a plurality of heart beats defining a beat set. For each beat in the set, it is determined whether the beat is a non-classified beat (e.g., paced beat, a beat outside of a specified heart rate range or a PVC), or a classified beat. For each classified beat, it is determined whether the beat is a non-detect beat, a minor beat or a major beat. Counts of classified beats, non-classified beats, major beats, minor beats, and non-detect beats are maintained. The beat set is declared to be one of a non-classified set, a major set, a minor set or a non-detect set based on the relative counts of classified beats, non-classified beats, major beats, minor beats, and non-detect beats. Over a period of time, counts of beat-set types are maintained and entry into and exit from ST episodes are determined based on these beat-set counts.
Abstract:
The invention relates to a polarization-controlled encoding method, encoder and quantum key distribution system, which is characterized in that polarization maintaining light path or 90 degree rotation Faraday mirror are used inside the encoder to keep the polarization of the output pulses same, and that in the quantum key distribution system employing the polarization-controlled encoder the pulse emitted from transmitter is unidirectional-transmitted to receiver and then quantum key distribution is implemented using interference in the pulses according to the quantum key distribution protocol. The quantum key distribution system using the polarization-controlled encoder of the invention has the ability of avoiding the wiretapping to transmitter, receiver and quantum channel. Detection units each of which separates reversed photon from other photons are added at the out port of the transmitter and the in port of receiver, respectively, so that Trojan horse is prevented from entering and photons with phase modulated information are prevented from leaving the safe area in receiver. Unconditionally safe key distribution can be accomplished by using the quantum key distribution system of the invention.
Abstract:
The present invention provides a fusion protein comprising an immunostimulatory polypeptide and a mutant E7 protein of a human papilloma virus. The present invention also provides a gene encoding the fusion protein, expression vectors containing the gene, a pharmaceutical composition comprising the fusion protein, a method for treating or preventing a human papilloma virus related disease by using the fusion protein and uses of the fusion protein in the preparation of a medicament for the treatment or prevention of the human papilloma virus related disease.
Abstract:
The invention relates to a polarization-controlled encoding method, encoder and quantum key distribution system, which is characterized in that polarization maintaining light path or 90 degree rotation Faraday mirror are used inside the encoder to keep the polarization of the output pulses same, and that in the quantum key distribution system employing the polarization-controlled encoder the pulse emitted from transmitter is unidirectional-transmitted to receiver and then quantum key distribution is implemented using interference in the pulses according to the quantum key distribution protocol. The quantum key distribution system using the polarization-controlled encoder of the invention has the ability of avoiding the wiretapping to transmitter, receiver and quantum channel. Detection units each of which separates reversed photon from other photons are added at the out port of the transmitter and the in port of receiver, respectively, so that Trojan horse is prevented from entering and photons with phase modulated information are prevented from leaving the safe area in receiver. Unconditionally safe key distribution can be accomplished by using the quantum key distribution system of the invention.