摘要:
Non-volatile memory devices are disclosed. In a first example non-volatile memory device, programming and erasing of the memory device is performed through the same insulating barrier without the use of a complex symmetrical structure. In the example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to a charge storage region. Further in the example device, erasing is accomplished by tunneling positive carriers from the charge supply region to the charge storage region. In a second example non-volatile memory device, a charge storage region with spatially distributed charge storage region is included. Such a charge storage region may be implemented in the first example memory device or may be implemented in other memory devices. In the second example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to the charge storage region. In the second example device, the tunneled negative charge carriers are stored in the discrete storage sites.
摘要:
Non-volatile memory devices are disclosed. In a first example non-volatile memory device, programming and erasing of the memory device is performed through the same insulating barrier without the use of a complex symmetrical structure. In the example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to a charge storage region. Further in the example device, erasing is accomplished by tunneling positive carriers from the charge supply region to the charge storage region. In a second example non-volatile memory device, a charge storage region with spatially distributed charge storage region is included. Such a charge storage region may be implemented in the first example memory device or may be implemented in other memory devices. In the second example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to the charge storage region. In the second example device, the tunneled negative charge carriers are stored in the discrete storage sites.
摘要:
An insulating barrier extending between a first conductive region and a second conductive region is disclosed. The insulating barrier is provided for tunnelling charge carriers from the first to the second region, the insulating barrier comprising a first portion contacting the first region and a second portion contacting the first portion and extending towards the second region, the first portion being substantially thinner than the second portion, the first portion being constructed in a first dielectric and the second portion being constructed in a second dielectric different from the first dielectric, the first dielectric having a lower dielectric constant than the second dielectric.
摘要:
An insulating barrier extending between a first conductive region and a second conductive region is disclosed. The insulating barrier is provided for tunnelling charge carriers from the first to the second region, the insulating barrier comprising a first portion contacting the first region and a second portion contacting the first portion and extending towards the second region, the first portion being substantially thinner than the second portion, the first portion being constructed in a first dielectric and the second portion being constructed in a second dielectric different from the first dielectric, the first dielectric having a lower dielectric constant than the second dielectric.
摘要:
An insulating barrier extending between a first conductive region and a second conductive region is disclosed. The insulating barrier is provided for tunnelling charge carriers from the first to the second region, the insulating barrier comprising a first portion contacting the first region and a second portion contacting the first portion and extending towards the second region, the first portion being substantially thinner than the second portion, the first portion being constructed in a first dielectric and the second portion being constructed in a second dielectric different from the first dielectric, the first dielectric having a lower dielectric constant than the second dielectric.
摘要:
Non-volatile memory devices are disclosed. In a first example non-volatile memory device, programming and erasing of the memory device is performed through the same insulating barrier without the use of a complex symmetrical structure. In the example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to a charge storage region. Further in the example device, erasing is accomplished by tunneling positive carriers from the charge supply region to the charge storage region. In a second example non-volatile memory device, a charge storage region with spatially distributed charge storage region is included. Such a charge storage region may be implemented in the first example memory device or may be implemented in other memory devices. In the second example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to the charge storage region. In the second example device, the tunneled negative charge carriers are stored in the discrete storage sites.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
摘要:
Non-volatile memory devices are disclosed. In a first example non-volatile memory device, programming and erasing of the memory device is performed through the same insulating barrier without the use of a complex symmetrical structure. In the example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to a charge storage region. Further in the example device, erasing is accomplished by tunneling positive carriers from the charge supply region to the charge storage region. In a second example non-volatile memory device, a charge storage region with spatially distributed charge storage region is included. Such a charge storage region may be implemented in the first example memory device or may be implemented in other memory devices. In the second example device, programming is accomplished by tunneling negative charge carriers from a charge supply region to the charge storage region. In the second example device, the tunneled negative charge carriers are stored in the discrete storage sites.
摘要:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
摘要:
A non-volatile memory device having a control gate on top of the second dielectric (interpoly or blocking dielectric), at least a bottom layer of the control gate in contact with the second dielectric being constructed in a material having a predefined high work-function and showing a tendency to reduce its work-function when in contact with a group of certain high-k materials after full device fabrication. At least a top layer of the second dielectric, separating the bottom layer of the control gate from the rest of the second dielectric, is constructed in a predetermined high-k material, chosen outside the group for avoiding a reduction in the work-function of the material of the bottom layer of the control gate. In the manufacturing method, the top layer is created in the second dielectric before applying the control gate.