Abstract:
An improved reaction chamber cleaning process is provided for removing water residues that makes use of noble-gas plasma reactions. The method is easy applicable and may be combined with standard cleaning procedure. A noble-gas plasma (e.g. He) that emits high energy EUV photons (E>20 eV) which is able to destruct water molecules to form electronically excited oxygen atoms is used to remove the adsorbed water.
Abstract:
One inventive aspect relates to a method for fabricating a high-k dielectric layer. The method comprises depositing onto a substrate a layer of a high-k dielectric material having a first thickness. The high-k dielectric material has a bulk density value and the first thickness is so that the high-k dielectric layer has a density of at least the bulk density value of the high-k dielectric material minus about 10%. The method further comprises thinning the high-k dielectric layer to a second thickness. Another inventive aspect relates to a semiconductor device comprising a high-k dielectric layer as fabricated by the method.
Abstract:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
Abstract:
A method for manufacturing a dual work function semiconductor device and the device made thereof are disclosed. In one aspect, a method includes providing a gate dielectric layer over a semiconductor substrate. The method further includes forming a metal layer over the gate dielectric layer. The method further includes forming a layer of gate filling material over the metal layer. The method further includes patterning the gate dielectric layer, the metal layer and the gate filling layer to form a first and a second gate stack. The method further includes removing the gate filling material only from the second gate stack thereby exposing the underlying metal layer. The method further includes converting the exposed metal layer into an metal oxide layer. The method further includes reforming the second gate stack with another gate filling material.
Abstract:
A method for manufacturing a non-volatile memory device is described. The method comprises growing a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored. A non-volatile memory device is also described. In the non-volatile memory device, the interpoly/blocking dielectric comprises a layer in a siliconoxide consuming material, e.g. DyScO, on top of the upper layer of the layer where charge is stored, the siliconoxide consuming material having consumed at least part of the upper layer.
Abstract:
A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The interfacial layer comprises a lanthanum hafnium oxide material for modulating the effective work function of the metal gate. The gate dielectric material in contact with the interfacial layer is different that the interfacial layer material. A method for its manufacture is also provided and its applications.
Abstract:
One inventive aspect is related to a method of minimizing the final thickness of an interfacial oxide layer between a semiconductor material and a high dielectric constant material. The method comprises depositing a covering layer on the high dielectric constant material. The method further comprises removing adsorbed/absorbed water from the high dielectric constant material prior to depositing the covering layer. The removal of adsorbed/absorbed water is preferably done by a degas treatment. The covering layer may be a gate electrode or a spacer dielectric.
Abstract:
A new MOSFET device is described comprising a metal gate electrode, a gate dielectric and an interfacial layer. The electrostatic potential at an interface between the gate electrode and the gate dielectric of a MOSFET device can be controlled by introducing one or more interfacial layer(s) of a dielectric material, at the monolayer(s) level (i.e., preferably two monolayers), between the gate electrode and the gate dielectric. A method for its manufacture is also provided and its applications.
Abstract:
The present disclosure provides a method for manufacturing at least one nanowire Tunnel Field Effect Transistor (TFET) semiconductor device. The method comprises providing a stack comprising a layer of channel material with on top thereof a layer of sacrificial material, removing material from the stack so as to form at least one nanowire from the layer of channel material and the layer of sacrificial material, and replacing the sacrificial material in the at least one nanowire by heterojunction material. A method according to embodiments of the present disclosure is advantageous as it enables easy manufacturing of complementary TFETs.
Abstract:
A method is provided for producing a porogen-residue-free ultra low-k film with porosity higher than 50% and a high elastic modulus above 5 GPa. The method starts with depositing a SiCOH film using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) or Chemical Vapor Deposition (CVD) onto a substrate and then first Performing an atomic hydrogen treatment at elevated wafer temperature in the range of 200° C. up to 350° C. to remove all the porogens and then performing a UV assisted thermal curing step.