摘要:
A tunable nanomechanical oscillator device and system is provided. The nanomechanical oscillator device comprising at least one nanoresonator, such as a suspended nanotube, designed such that injecting charge density into the tube (e.g. by applying a capacitively-cuopled voltage bias) changes the resonant frequency of the nanotube, and where exposing the resonator to an RF bias induces oscillitory movement in the suspended portion of the nanotube, forming a nanoscale resonator, as well as a force sensor when operated in an inverse mode. A method of producing an oriented nanoscale resonator structure with integrated electrodes is also provided.
摘要:
A nanofeature particulate trap comprising a plurality of densely packed nanofeatures, such as nanotubes, and a particulate detector incorporating the nanofeature particulate trap are provided. A method of producing a nanotrap structure alone or integrated with a particulate detector is also provided.
摘要:
A nanomechanical actuator/oscillator device and system are provided. The nanomechanical actuator/oscillator device comprising nanobimorphs, such as nanotubes, designed such that inducing a difference in charge density between the tubes (e.g. by biasing one tube positive with respect to the other with sufficient tube-to-tube contact resistance) induces lateral movement in the end of the bimorph, forming a nanoscale resonator, as well as a force sensor when operated in an inverse mode. A method of producing a novel nanobimorph structure with integrated electrodes is also provided.
摘要:
A tunable nanomechanical resonator system comprising an array of nanofeatures, such as nanotubes, where the nanofeatures are in signal communication with means for inducing a difference in charge density in the nanofeature such that the mechanical resonant frequency of the nanofeature can be tuned, and where the nanofeature is in signal communication with a waveguide or other RF bias conduit such that an RF signal having a frequency corresponding to the mechanical resonant frequency of the array will couple to the array thereby inducing resonant motion in the array of nanofeatures, and subsequently coupling to an output waveguide, forming a nanoscale RF filter is provided. A method of producing a nanoscale RF filter structure controllably positioned and oriented with a waveguide and integrated electrodes is also provided.
摘要:
A device for utilizing a non-gel self-assembled nano-feature array molecular sieve for analyzing molecules is provided. The molecular sieve device comprises an ordered array of self-assembled nano-features which function as a molecular sieve to separate molecules based on a suitable characteristic. A system for integrating the non-gel ordered self-assembled nano-feature array molecular sieve of this invention into a device for separating molecules based on a characteristic and a method for separating a wide range of molecules using the non-gel ordered self-assembled nano-feature array molecular sieve of the invention are also provided.
摘要:
A method of forming a periodic array of nano-scale objects using a block copolymer, and nano-scale object arrays formed from the method are provided. The method for forming the arrays generally includes the steps of depositing a block copolymer of at least two blocks on a substrate to form an ordered meso-scale structured array of the polymer materials, forming catalytic metal dots based on the meso-scale structure, and growing nano-scale objects on the catalytic dots to form an ordered array of nano-scale objects.
摘要:
A method of forming a periodic array of nano-scale objects using a block copolymer, and nano-scale object arrays formed from the method are provided. The method for forming the arrays generally includes the steps of depositing a block copolymer of at least two blocks on a substrate to form an ordered meso-scale structured array of the polymer materials, forming catalytic metal dots based on the meso-scale structure, and growing nano-scale objects on the catalytic dots to form an ordered array of nano-scale objects.
摘要:
Methods and devices for spectroscopic identification of molecules using nanoscale wires are disclosed. According to one of the methods, nanoscale wires are provided, electrons are injected into the nanoscale wire; and inelastic electron scattering is measured via excitation of low-lying vibrational energy levels of molecules bound to the nanoscale wire.
摘要:
A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800.degree. C. A weak link barrier layer of a nonsuperconducting film of N--YBaCuO is deposited over the electrode at a temperature range of 520.degree. C. to 540.degree. C. at a lower deposition rate. Subsequently, a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800.degree. C. The weak link barrier layer has a thickness of approximately 50 .ANG. and the SNS element can be constructed to provide an edge geometry junction.
摘要:
A technique for defining the active area of a high-T.sub.c superconductor Josephson junction uses an epitaxial slotted insulator patterned over the edge of the superconductor thin film-insulator bilayer. The superconductor/normal-metal/superconductor edge junction formed between the slotted insulator has a small active area. The counter electrode provided as an interconnect of the junction can therefore be wider than the active area of the edge junction since it can overlap onto the patterned slotted insulator. The use of the slotted insulator enables fabrication of junctions having resistances and critical currents in the desired range for high-T.sub.c superconductor circuits while enabling the use of wide, low inductance interconnects.