摘要:
A vapor delivery system for the manufacture of an optical preform includes a deposition bubbler (60) and another bubbler (40) referred to as a supply bubbler which is interposed between a reservoir (24) of a liquid and the deposition bubbler. Heat energy is applied to the supply bubbler and to the deposition bubbler to vaporize liquid therein. A carrier gas is introduced into the liquid in the supply bubbler at a location below the free surface and into the deposition bubbler to cause vapor of the liquid to become entrained in the carrier gas and to flow from the supply bubbler into the deposition bubbler and from the deposition bubbler to a substrate tube from which an optical preform is made. Facilities are provided for maintaining sufficient liquid in the supply bubbler and suitable temperatures of the liquid in the supply and deposition bubblers to control the vapor flow into and out of the deposition bubbler to prevent unintended perturbations in the deposition bubbler. As a result, the concentration level of the vapor which is entrained in the carrier gas and delivered to the substrate tube is maintained at a substantially constant value.
摘要:
A lightguide fiber preform is made by depositing optically suitable layers of doped silicon dioxide on an inner wall of a rotating glass substrate tube (31) which is exposed to a moving zone of heat during a deposition mode and during a mode when the tube is collapsed. During each of a plurality of passes of a torch assembly (50) in the collapse mode following deposition, a contact device (101) is in continuous engagement with the tube and is caused to apply forces to each successive increment of its length following exposure to at least an initial portion of the zone of heat to collapse incrementally the tube. Between successive ones of the plurality of passes, the contact device is moved inwardly of the tube so that each increment of length is exposed to forces which as between the successive passes are applied at points incrementally closer to the longitudinal axis (36) of the tube.
摘要:
A preform from which lightguide fiber is drawn is made by depositing optically suitable layers of doped silicon dioxide on an inner wall of a rotating glass substrate tube which is exposed to a moving zone of heat during a deposition mode and during a collapse mode. During at least a first pass following the deposition mode, a contact device is caused to engage each successive increment of length of the tube during exposure to the zone of heat. The contact device causes any sagged or offset portions of the tube to be reconfigured and causes the tube to have a central longitudinal axis which is a straight line which extends between stocks of a lathe by which ends of the tube are supported. The contact device may also be used to cause the tube to have a predetermined configuration along its length. The position of the contact device relative to the maximum temperature within the moving zone of heat for each increment of length of the glass tube allows the shape of the tube to be changed and allows that shape to be retained.
摘要:
In order to react gases and/or vapors to deposit optically suitable layers of doped silicon dioxide on an inner wall of a glass substrate tube to produce a preform from which optical fibers are drawn, the glass tube is heated by a mixture of combustible gases. The combustible gases are directed along passageways in a housing of a torch assembly which confines a portion of the length of the tube and then out of the passageways to produce a flame that engages the confined portion of the length of the tube. The housing and walls that define ends of the passageways adjacent the tube are cooled to an extent which substantially eliminates oxidation of the material from which the housing and the walls of the passageways are constructed. The torch assembly provides a variable confinement of the tube, radially and longitudinally, which is effective to control the temperature profile produced at the surface of the tube as it is rotated about its longitudinal axis, and as the torch assembly is moved to heat successive portions of the length of the tube.
摘要:
A device (80) for sealing a furnace (50) which is used to draw a fiber (52) from a rod-like preform (51) includes a housing (82) having a cavity (121) for receiving a disc (111). The disc (111) is suspended for movement in the cavity in a plane lateral to the preform that extends through a center opening (116) in the disc and into the furnace. An inert gas is supplied to the cavity and directed inwardly through radially disposed passageways (118--118) in the disc (111) to impinge on the preform and split into two streams which move along the preform in opposite directions to prevent the entry of ambient air into, as well as the escape of gas from within, the furnace. The inert gas also causes the disc to be moved within the cavity to compensate for irregularities in the preform or for its misalignment from a vertical axis of the furnace, and provides a cushion so that contact between the disc and the preform is avoided.
摘要:
A method for making a glass preform substantially free of OH impurities is disclosed. The method comprises the steps of introducing a moving stream of a vapor mixture including at least one compound glass-forming precursor together with an oxidizing medium into a tube, while generating a hydrogen-free isothermal plasma on an outer surface of the tube to react the mixture and produce a glassy deposit on an inner surface of the tube. The method uses a plasma torch or a radio frequency furnace.
摘要:
A sealed rotary joint and method are described wherein a purge fluid is passed over a tube rotating within an end cap and through a ball bearing component of the joint.
摘要:
A sealed rotary joint and method are described wherein a purge fluid is passed over a tube rotating within an end cap and through a ball bearing component of the joint. A vapor stream including a vaporized glass forming precursor entrained in an oxidizing carrier gas is passed into a rotating optical fiber preform tube through a housing supporting the ball bearing. A stream of the oxidizing carrier gas at a pressure greater than the pressure of the vapor stream can act as the purge fluid.
摘要:
To attain high strength optical glass fibers, the glass preforms, from which the fibers are drawn, must generally be free of surface imperfections such as bubbles, and air lines. It has been discovered that these imperfections can be removed quickly and cleanly by contacting the preform surface with a substantial portion of the electrically conducting plasma region (the plasma fireball) extending from a plasma torch. Significantly, the surface material is substantially removed by vaporization, due to the extremely high plasma temperature (>9000.degree. C. at the plasma center) of the isothermal plasma torch. Though the temperatures in the tail of the plasma fireball are substantially less than at the plasma center, the temperatures are generally still several thousand degrees centigrade. These tail temperatures typically are sufficiently high to cause vaporization of most refractory dielectrics making the inventive method applicable to the fabrication of a wide variety of articles comprising refractory dielectric bodies.Advantageously, selective etching, according to one aspect of the inventive method, is used to remove fiber preform eccentricity and to fabricate optical fiber preforms with non-circular cross-sections for such applications as fiber sensors. Selective etching can result by controlling the plasma fireball location, the rotation of the silica preform, and/or the travel of the fireball across the preform. Significantly, the fireball location is controlled, among other ways, by injecting into the torch an additional gas that has a high ionization threshold or by inserting a probe along the axis of the torch. In either case, a substantial portion of the plasma fireball is advantageously "pushed" outside the torch for ease of contact with the silica preform surface, or any other refractory dielectric being processed.
摘要:
Apparatus for supplying fluid to a rotary tube uncontaminated with ambient air comprises an end cap having an open ended bore in which an end portion of the tube may be rotatably positioned, a first conduit extending into the end cap through which fluid may be fed into the rotary tube, and a second conduit communicating with the end cap bore through which a purge fluid may be fed into and at least partially through the bore to the exterior of the end cap.