Abstract:
An aircraft part manufacturing device for automated composite lamination on a mandrel surface of a tool having a rotational axis includes a mechanical supporting structure that supports multiple material delivery heads. The tool is moveable and rotatable relative to the mechanical supporting structure. The mechanical supporting structure provides for axial translation of the material delivery heads relative to the mandrel surface while the mandrel surface is rotated for laying down courses of composite material over the entire mandrel surface of the tool. The position and movement of each of the plurality of material delivery heads is individually adjustable. Arm mechanisms provide motion of each material delivery head in a direction normal to the mandrel surface; rotation about an axis normal to the mandrel surface; circumferential position adjustment in a hoop direction relative to the mandrel surface; and axial position adjustment relative to the other material delivery heads.
Abstract:
A method of transferring an uncured composite laminate skin from a lay-up surface of a male mandrel tool to a female cure tool includes defining multiple vacuum zones on the lay-up surface, each zone corresponding to one of a multiple of portions into which the skin is to be separated. For example, to separate the skin into two portions, a low profile seal of a first membrane to the lay-up surface is formed at a first vacuum zone and a second low profile seal for a second membrane is formed at a second vacuum zone. The method further includes laying up a composite laminate skin over all the vacuum zones; separating the composite laminate skin into portions, for example, a first portion over the first vacuum zone and a second portion over the second vacuum zone; and releasing the portions individually into cure tools having an outside mold line surface.
Abstract:
A method is provided for making a composite laminate aircraft skin for a fuselage in multiple composite panels. A resin-impregnated composite tape is placed on a lay-up surface of a mandrel tool to form the composite laminate aircraft skin as a barrel that is substantially the shape of a fuselage section. The barrel is cut into a plurality of panels on the mandrel tool, and at least one panel of the plurality of panels is transferred, individually and independently of all other of the plurality of panels, from the lay-up surface of the mandrel tool to a first cure tool of a plurality of cure tools having an aero surface tooled to an outer mold line. The at least one of the panels is cured on the first cure tool to form a cured composite panel. The first cure tool defines and controls the outer mold line of the at least one panel. The cured composite panel is removed from the first cure tool.
Abstract:
The non-productive motion of an automatic composite tape laydown machine is optimized to increase the overall rate of the laydown. Ordering of tape courses is analyzed to determine the time required to move between courses using a time function that reflects operating characteristics and limitations of the tape laydown machine. The ordering is optimized by re-ordering, grouping and/or partitioning the tape courses so as to reduce the non-productive motion of the machine. The optimized ordering is used by a NC program that controls the operation of the machine.
Abstract:
A multiple head tape placement system includes several tape heads. Each tape head includes: a guide chute and a compaction roller for delivering a composite material to a mandrel. A backing is removed from the composite tape material before it reaches the compaction roller. Each tape head also includes a material cutter disposed to cut the composite tape material after the backing is removed and before the material reaches the compaction roller. The material cutter includes a curved blade with a convex cutting surface and a flat blade that contacts the curved blade in at most two contact points along a cutting edge of the flat blade as the flat blade moves vertically up and down past the curved blade with a horizontal rocking motion. The curved blade and the flat blade cut the composite tape material simultaneously in two opposing directions without laterally misaligning the composite tape material.
Abstract:
To apply a course on a layup mold, a ply boundary that defines a ply area on the layup mold is determined and a tape of composite material is applied on the ply area at an oblique angle relative to the ply boundary. In addition, a leading edge of the tape is butt cut and the leading edge, and the ply boundary essentially converge. Furthermore, a trailing edge is generated. The trailing edge is a butt cut and the trailing edge and the ply boundary essentially converge.
Abstract:
The non-productive motion of an automatic composite tape laydown machine is optimized to increase the overall rate of the laydown. Ordering of tape courses is analyzed to determine the time required to move between courses using a time function that reflects operating characteristics and limitations of the tape laydown machine. The ordering is optimized by re-ordering, grouping and/or partitioning the tape courses so as to reduce the non-productive motion of the machine. The optimized ordering is used by a NC program that controls the operation of the machine.
Abstract:
A method generally includes electronically accessing positional data defining a defect location on a composite structure, and automatically causing a material placement machine to return to the defect location as defined by the positional data. The method can also include automatically causing the material placement machine to place or lay down material sufficient for repairing a defect at the defect location. Alternatively, the material placement machine may automatically return to a defect location, and then an operator may manually repair the defect at the defect location.