Abstract:
Compatibility in polymer compounds is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. Applying a pseudo-thermodynamic approach takes advantage of this analogy between the kinetics of mixing for polymer compounds and true thermally driven dispersion for colloids. The results represent a new approach to understanding and predicting compatibility in polymer compounds based on a pseudo-thermodynamic approach.
Abstract:
Disclosed herein are tread rubber compositions containing a specified polyurethane, tires containing a tread made from the rubber compositions, and related methods of improving the wet and dry traction of a tire tread by using the polyurethane-containing rubber compositions. The polyurethane includes a saturated hydroxy-functionalized polydiene segment as diol.
Abstract:
Disclosed herein are rubber compositions suitable for use in tire treads comprising (a) at least one conjugated diene polymer or copolymer; (b) at least one filler; (c) a curative package; and (d) at least one of: (i) from 0.2 to 10 phr of at least one halogenated hydrocarbon wax, or (ii) from 0.2 to 10 phr of at least one silicone-containing wax comprising a functionalized polyalkylsiloxane, a functionalized polyalkylsilsesquioxane resin, or combinations thereof. In certain embodiments, the at least one halogenated hydrocarbon wax is a chlorinated hydrocarbon or a fluorinated hydrocarbon wax.
Abstract:
Compatibility in polymer compounds is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. Applying a pseudo-thermodynamic approach takes advantage of this analogy between the kinetics of mixing for polymer compounds and true thermally driven dispersion for colloids. The results represent a new approach to understanding and predicting compatibility in polymer compounds based on a pseudo-thermodynamic approach.
Abstract:
Compatibility in polymer compounds is determined by the kinetics of mixing and chemical affinity. Compounds like reinforcing filler/elastomer blends display some similarity to colloidal solutions in that the filler particles are close to randomly dispersed through processing. Applying a pseudo-thermodynamic approach takes advantage of this analogy between the kinetics of mixing for polymer compounds and true thermally driven dispersion for colloids. The results represent a new approach to understanding and predicting compatibility in polymer compounds based on a pseudo-thermodynamic approach.
Abstract:
The present disclosure provides reinforcing filler-containing rubber compositions suitable for use in tires, and particularly in tire treads. These rubber compositions comprise a metal carboxylate. The metal carboxylate provides improved processability to the rubber compositions in the form of a reduced Mooney viscosity. In certain exemplary embodiments, these rubber compositions containing the metal carboxylate also have an enhanced elastic modulus (also referred to as the G′). Further, in certain of the enhanced elastic modulus embodiments, the rubber compositions containing the metal carboxylate also have decreased hysteresis loss.
Abstract:
Micro-sized particles having a polymeric structure of cells are provided. Also provided is a method of producing micro-sized particles having a polymeric structure comprising: (1) forming a homogenous solution by heating a mixture of a high molecular weight polymer and a low molecular weight material, wherein said low molecular weight material makes up at least about 50% by weight of the homogenous solution, (2) forming a dispersed solution by dispersing the homogenous solution formed in step (1) into an inert material, (3) cooling the dispersed solution to cause the high molecular weight polymer to phase separate from the low molecular weight material, (4) forming solid particles comprised of said low molecular weight material trapped inside a structure of cells of said high molecular weight polymer, and (5) removing the solid particles from the dispersed solution.
Abstract:
The present disclosure provides reinforcing filler-containing rubber compositions suitable for use in tires, and particularly in tire treads. These rubber compositions comprise a metal carboxylate. The metal carboxylate provides improved processability to the rubber compositions in the form of a reduced Mooney viscosity. In certain exemplary embodiments, these rubber compositions containing the metal carboxylate also have an enhanced elastic modulus (also referred to as the G′). Further, in certain of the enhanced elastic modulus embodiments, the rubber compositions containing the metal carboxylate also have decreased hysteresis loss.
Abstract:
Methods are described for treatment of aramid fibers to modify the surface of the fibers. The treated fibers have improved adhesion to elastomer materials as compared to untreated fibers. Modification methods include irradiating the fibers, compressing and straining the fibers under a constant pull force and immersing the fibers in a coupling agent fluid. The treated fibers can be used with elastomers and provide reinforcement elements in products such as tires.
Abstract:
Specific types of block interpolymers can aid in compatibilizing otherwise incompatible elastomers. Each block of the interpolymer is generally compatible, even miscible, with each of the elastomers. The composition includes a sufficient amount of the block interpolymer such that that the level of immiscibility of the composition is decreased, as evidenced by smaller domains of one elastomer in the other.