Abstract:
According to one exemplary embodiment, a method for fabricating a flash memory cell in a semiconductor die includes forming a control gate stack overlying a floating gate stack in a memory region of a substrate, where the floating gate stack includes a floating gate overlying a portion of a dielectric one layer. The floating gate includes a portion of a metal one layer and the dielectric o one layer includes a first high-k dielectric material. The control gate stack can include a control gate including a portion of a metal two layer, where the metal one layer can include a different metal than the metal two layer.
Abstract:
According to one exemplary embodiment, a method for fabricating a flash memory cell in a semiconductor die includes forming a control gate stack overlying a floating gate stack in a memory region of a substrate, where the floating gate stack includes a floating gate overlying a portion of a dielectric one layer. The floating gate includes a portion of a metal one layer and the dielectric o one layer includes a first high-k dielectric material. The control gate stack can include a control gate including a portion of a metal two layer, where the metal one layer can include a different metal than the metal two layer.
Abstract:
Semiconductor devices and manufacturing methods are provided for making channel and gate lengths independent from lithography. Also, semiconductor devices and manufacturing methods are provided for increasing resistivity between drain and channel to allow for higher voltage operation. For example, a semiconductor device includes a first doped layer implanted in a semiconductor substrate forming one of a source or a drain and a gate metal layer disposed over the first doped layer. The semiconductor device further includes a second doped layer disposed over the gate metal forming the other the source or the drain, where the first doped layer, the gate metal layer and the second doped layer form a vertical stack of layers of the semiconductor device. The semiconductor device further includes a conduction channel formed in a trench that extends vertically through the vertical stack of layers and terminates at the semiconductor substrate.
Abstract:
Semiconductor devices and manufacturing methods are provided for making channel and gate lengths independent from lithography. Also, semiconductor devices and manufacturing methods are provided for increasing resistivity between drain and channel to allow for higher voltage operation. For example, a semiconductor device includes a first doped layer implanted in a semiconductor substrate forming one of a source or a drain and a gate metal layer disposed over the first doped layer. The semiconductor device further includes a second doped layer disposed over the gate metal forming the other the source or the drain, where the first doped layer, the gate metal layer and the second doped layer form a vertical stack of layers of the semiconductor device. The semiconductor device further includes a conduction channel formed in a trench that extends vertically through the vertical stack of layers and terminates at the semiconductor substrate.
Abstract:
Semiconductor devices and manufacturing methods are provided for making channel and gate lengths independent from lithography. Also, semiconductor devices and manufacturing methods are provided for increasing resistivity between drain and channel to allow for higher voltage operation. For example, a semiconductor device includes a first doped layer implanted in a semiconductor substrate forming one of a source or a drain and a gate metal layer disposed over the first doped layer. The semiconductor device further includes a second doped layer disposed over the gate metal forming the other the source or the drain, where the first doped layer, the gate metal layer and the second doped layer form a vertical stack of layers of the semiconductor device. The semiconductor device further includes a conduction channel formed in a trench that extends vertically through the vertical stack of layers and terminates at the semiconductor substrate.