Abstract:
An integrated communications system. Comprising a substrate having a receiver disposed on the substrate for converting a received signal to an IF signal. Coupled to a VGA for low voltage applications and coupled to the receiver for processing the IF signal. The VGA includes a bank pair having a first bank of differential pairs of transistors and a second bank of differential pairs of transistors. The bank pair is cross-coupled in parallel, the IF signal is applied to the bank pair decoupled from a control signal used to control transconductance output gain of the bank pair over a range of input voltages. A digital IF demodulator is disposed on the substrate and coupled to the VGA for low voltage applications, for converting the IF signal to a demodulated baseband signal. And a transmitter is disposed on the substrate operating in cooperation with the receiver to establish a two way communications path.
Abstract:
A differential amplifier includes a positive leg, a negative leg, and biasing circuitry. The positive leg includes at least one positive leg transistor, a first positive leg degeneration capacitor, and positive leg degeneration capacitor biasing circuitry configured to bias the first degeneration capacitor during a reset period. The negative leg includes at least one negative leg transistor, a negative leg degeneration capacitor, and negative leg degeneration capacitor biasing circuitry configured to bias the negative leg degeneration capacitor during the reset period. The biasing circuitry biases current of both the at least one positive leg transistor and the at least one negative leg transistor based on capacitance of the first positive leg degeneration capacitor, capacitance of the first negative leg degeneration capacitor, and a sampling time during an amplification period. The differential amplifier may be a stage amplifier in an Analog to Digital Converter (ADC).
Abstract:
A multi-lane analog-to-digital converter (ADC) is disclosed that is capable of compensating for one or more of its impairments such that its digital output accurately represents its analog input. The multi-lane ADC can compensate for unwanted phase offsets between multiple phases of a sampling clock used by the multi-lane ADC, unwanted bandwidth mismatches between lanes in the multi-lane ADC, and/or unwanted gain mismatches between the lanes in the multi-lane ADC to provide some examples.
Abstract:
A differential amplifier includes a positive leg, a negative leg, and biasing circuitry. The positive leg includes at least one positive leg transistor, a first positive leg degeneration capacitor, and positive leg degeneration capacitor biasing circuitry configured to bias the first degeneration capacitor during a reset period. The negative leg includes at least one negative leg transistor, a negative leg degeneration capacitor, and negative leg degeneration capacitor biasing circuitry configured to bias the negative leg degeneration capacitor during the reset period. The biasing circuitry biases current of both the at least one positive leg transistor and the at least one negative leg transistor based on capacitance of the first positive leg degeneration capacitor, capacitance of the first negative leg degeneration capacitor, and a sampling time during an amplification period. The differential amplifier may be a stage amplifier in an Analog to Digital Converter (ADC).
Abstract:
A semiconductor device fabrication operation is commonly used to manufacture one or more integrated circuits onto a semiconductor substrate. The semiconductor device fabrication operation forms one or more transistors onto an arrangement of fabrication layers to form the one or more integrated circuits which introduces unwanted capacitances, often referred to as parasitic capacitances, into the one or more transistors. The one or more integrated circuits include one or more compensation modules that, when combined with the parasitic capacitances of the one or more transistors, ideally linearizes the non-linearity caused by the parasitic capacitances of the one or more transistors. For example, the one or more compensation modules incorporate a non-linear or a piecewise linear transfer function that is inversely related to the parasitic capacitances of the one or more transistors.
Abstract:
A semiconductor device fabrication operation is commonly used to manufacture one or more integrated circuits onto a semiconductor substrate. The semiconductor device fabrication operation forms one or more transistors onto an arrangement of fabrication layers to form the one or more integrated circuits which introduces unwanted capacitances, often referred to as parasitic capacitances, into the one or more transistors. The one or more integrated circuits include one or more compensation modules that, when combined with the parasitic capacitances of the one or more transistors, ideally linearizes the non-linearity caused by the parasitic capacitances of the one or more transistors. For example, the one or more compensation modules incorporate a non-linear or a piecewise linear transfer function that is inversely related to the parasitic capacitances of the one or more transistors.
Abstract:
A multi-lane analog-to-digital converter (ADC) is disclosed that is capable of compensating for one or more of its impairments such that its digital output accurately represents its analog input. The multi-lane ADC can compensate for unwanted phase offsets between multiple phases of a sampling clock used by the multi-lane ADC, unwanted bandwidth mismatches between lanes in the multi-lane ADC, and/or unwanted gain mismatches between the lanes in the multi-lane ADC to provide some examples.
Abstract:
An integrated communications system. Comprising a substrate having a receiver disposed on the substrate for converting a received signal to an IF signal. Coupled to a VGA for low voltage applications and coupled to the receiver for processing the IF signal. The VGA includes a bank pair having a first bank of differential pairs of transistors and a second bank of differential pairs of transistors. The bank pair is cross-coupled in parallel, the IF signal is applied to the bank pair decoupled from a control signal used to control transconductance output gain of the bank pair over a range of input voltages. A digital IF demodulator is disposed on the substrate and coupled to the VGA for low voltage applications, for converting the IF signal to a demodulated baseband signal. And a transmitter is disposed on the substrate operating in cooperation with the receiver to establish a two way communications path.