摘要:
A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
摘要:
A hybrid substrate having a high-mobility surface for use with planar and/or multiple-gate metal oxide semiconductor field effect transistors (MOSFETs) is provided. The hybrid substrate has a first surface portion that is optimal for n-type devices, and a second surface portion that is optimal for p-type devices. Due to proper surface and wafer flat orientations in each semiconductor layers of the hybrid substrate, all gates of the devices are oriented in the same direction and all channels are located on the high mobility surface. The present invention also provides for a method of fabricating the hybrid substrate as well as a method of integrating at least one planar or multiple-gate MOSFET thereon.
摘要:
A method of forming a semiconductor structure including a plurality of finFFET devices in which crossing masks are employed in providing a rectangular patterns to define relatively thin Fins along with a chemical oxide removal (COR) process is provided. The present method further includes a step of merging adjacent Fins by the use of a selective silicon-containing material. The present invention also relates to the resultant semiconductor structure that is formed utilizing the method of the present invention.
摘要:
Accordingly, the present invention provides a double gated transistor and a method for forming the same that results in improved device performance and density. The preferred embodiment of the present invention uses provides a double gated transistor with asymmetric gate doping, where one of the double gates is doped degenerately n-type and the other degenerately p-type. By doping on of the gates n-type, and the other p-type, the threshold voltage of the resulting device is improved. In particular, by asymmetrically doping the two gates, the resulting transistor can, with adequate doping of the body, have a threshold voltage in a range that enables low-voltage CMOS operation. For example, a transistor can be created that has a threshold voltage between 0V and 0.5V for nFETs and between 0 and −0.5V for pFETs.
摘要:
A method for forming a transistor. A semiconductor substrate is provided. The semiconductor substrate is patterned to provide a first body edge. A first gate structure of a first fermi level is provided adjacent the first body edge. The semiconductor substrate is patterned to provide a second body edge. The first and second body edges of the semiconductor substrate define a transistor body. A second gate structure of a second fermi level is provided adjacent the second body edge. A substantially uniform dopant concentration density is formed throughout the transistor body.
摘要:
A method of forming a semiconductor structure including a plurality of finFFET devices in which crossing masks are employed in providing a rectangular patterns to define relatively thin Fins along with a chemical oxide removal (COR) process is provided. The present method further includes a step of merging adjacent Fins by the use of a selective silicon-containing material. The present invention also relates to the resultant semiconductor structure that is formed utilizing the method of the present invention.
摘要:
The present invention provides switches and sensors that automatically turn on and/or off an associated device. In particular, the present invention provides lighting devices containing switches and sensors associated with the device that power/depower the device and systems and objects containing the device.
摘要:
Embodiments herein present a device, method, etc. for a dual-plane complementary metal oxide semiconductor. The device comprises a fin-type transistor on a bulk silicon substrate. The fin-type transistor comprises outer fin regions and a center semiconductor fin region, wherein the center fin region has a {110} crystalline oriented channel surface. The outer fin regions comprise a strain inducing impurity that stresses the center semiconductor fin region. The strain inducing impurity contacts the bulk silicon substrate, wherein the strain inducing impurity comprises germanium and/or carbon. Further, the fin-type transistor comprises a thick oxide member on a top face thereof. The fin-type transistor also comprises a first transistor on a first crystalline oriented surface, wherein the device further comprises a second transistor on a second crystalline oriented surface that differs from the first crystalline oriented surface.
摘要:
A method of fabricating a high-performance planar back-gate CMOS structure having superior short-channel characteristics and reduced capacitance using processing steps that are not too lengthy or costly is provided. Also provided is a high-performance planar back-gate CMOS structure that is formed utilizing the method of the present invention. The method includes forming an opening in an upper surface of a substrate. Thereafter, a dopant region is formed in the substrate through the opening. In accordance with the inventive method, the dopant region defines a back-gate conductor of the inventive structure. Next, a front gate conductor having at least a portion thereof is formed within the opening.
摘要:
A multi-layered gate electrode stack structure of a field effect transistor device is formed on a silicon nano crystal seed layer on the gate dielectric. The small grain size of the silicon nano crystal layer allows for deposition of a uniform and continuous layer of poly-SiGe with a [Ge] of up to at least 70% using in situ rapid thermal chemical vapor deposition (RTCVD). An in-situ purge of the deposition chamber in a oxygen ambient at rapidly reduced temperatures results in a thin SiO2 or SixGeyOz interfacial layer of 3 to 4 A thick. The thin SiO2 or SixGeyOz interfacial layer is sufficiently thin and discontinuous to offer little resistance to gate current flow yet has sufficient [O] to effectively block upward Ge diffusion during heat treatment to thereby allow silicidation of the subsequently deposited layer of cobalt. The gate electrode stack structure is used for both nFETs and pFETs.
摘要翻译:在栅极电介质上的硅纳米晶种子层上形成场效应晶体管器件的多层栅电极堆叠结构。 硅纳米晶体层的小晶粒尺寸允许使用原位快速热化学气相沉积(RTCVD)沉积高达至少70%的[Ge]的均匀且连续的多晶硅层。 在快速降低的温度下在氧气环境中原位吹扫沉积室导致薄的SiO 2或Si x O x O O 3至4厚的界面层。 薄的SiO 2或Si x Si 2 O 3界面层足够薄且不连续以提供很小的电阻 到栅极电流仍具有足够的[O]以在热处理期间有效地阻挡Ge扩散,从而允许后续沉积的钴的硅化物。 栅电极堆叠结构用于nFET和pFET两者。