Abstract:
A novel method for improving water recovery from desalination systems by the removal of cations and/or anions using ion exchange (IX) technology. The system described herein is particularly useful for water recovery in brackish ecosystems and is unique in that important features include recycling, regeneration, and recovery of key components, thereby reducing costs and waste products.
Abstract:
A novel process for treatment of low quality or brackish water that allows increased recovery of high quality water, recovers commodity minerals and reduces the volume of water and mass of solids that are disposed from the process.
Abstract:
A mass spectrometer and method for performing high resolution mass spectrometry are provided, the mass spectrometer comprising an electrostatic trap and mass analyzer. The electrostatic trap comprises entrance and exit ends, entrance and exit end ion mirrors, a central field-free region, and a longitudinal axis. The mass analyzer receives ions from the exit end. Ions are admitted into the electrostatic trap via the entrance end, trapping ions in the electrostatic trap, the ions oscillating between the entrance and exit end ion mirrors along the axis. The electrostatic trap waits for the ions to separate into bunches different m/z values via the oscillating, and then excites a given bunch of ions of a given m/z value along the axis until at least a portion of the given bunch overcomes a barrier field at the exit end ion mirror, exiting the electrostatic trap for analysis, leaving behind remaining ions.
Abstract:
A method and apparatus are provided for effecting multiple mass selection or analysis steps. Fundamentally, the technique is based on moving ions in different directions through separate components of a mass spectrometer apparatus. To effect different steps, a precursor ion is selected in a first mass selector, and then passed into a collision cell, to effect fragmentation or reaction with a gas, to generate fragment or product ions. The generated product ions are then passed back into the first mass selector, and preferably back into an upstream ion trap. The product ions then pass through the first mass selector again, to select a desired product ion, for further fragmentation and analysis. These steps can be repeated a number of times. A final mass analysis step can be effected in either a time-of-flight section or other mass analyzer. The invention enables conventional triple quadrupole mass spectrometers and QqTOF mass spectrometers to effect multiple MS steps.
Abstract:
An apparatus and method of analyzing ions is described in which a Differential Mobility Analyzer (DMA) is combined with an analysis device. The DMS can be operated in first and second modes of operation to produce a plurality of ions that are sampled and analyzed by the analysis device. In the first mode of operation the DMA is configured to enable ion mobility separation and the analysis device samples and analyzes ions having ion mobility in a certain range of ion mobility and in the second mode of operation the DMA is configured to disable ion mobility separation and the analysis device samples and analyzes ions without discrimination based on ion mobility.
Abstract:
A method and apparatus are provided for effecting multiple mass selection or analysis steps. Fundamentally, the technique is based on moving ions in different directions through separate components of a mass spectrometer apparatus. To effect different steps, a precursor ion is selected in a first mass selector, and then passed into a collision cell, to effect fragmentation or reaction with a gas, to generate fragment or product ions. The generated product ions are then passed back into the first mass selector, and preferably back into an upstream ion trap. The product ions then pass through the first mass selector again, to select a desired product ion, for further fragmentation and analysis. These steps can be repeated a number of times. A final mass analysis step can be effected in either a time-of-flight section or other mass analyzer. The invention enables conventional triple quadrupole mass spectrometers and QqTOF mass spectrometers to effect multiple MS steps.
Abstract:
A method is provided of increasing the resolution in a tandem mass spectrometer having a first quadrupole Q1 to select a parent ion, a second quadrupole Q2 which contains a target gas and forms a collision cell, and a third or analyzing quadrupole Q3 which generates a mass spectrum from daughter ions from Q2. In the method, the target thickness of the target gas in Q2 is held at least at 1.32.times.10.sup.15 cm.sup.-2, preferably at least 3.30.times.10.sup.15 cm.sup.-2, and the DC offset voltage between Q2 and Q3 is kept low or zero. This greatly improves the resolution available in Q3. Q3 is therefore operated with at least unit resolution, and in some cases with resolution of 1/2 or 1/3 amu, making it possible to resolve isotopes of singly, doubly or triply charged daughter ions.
Abstract:
A method of operating a mass spectrometer having a rod set is provided. The rod set has a first end, a second end opposite to the first end, and a longitudinal axis extending between the first end and the second end. The method comprises a) admitting ions into the rod set; b) trapping at least some of the ions in the rod set by i) producing a first barrier field at a first end member adjacent to the first end of the rod set, ii) producing a second barrier field at a second end member adjacent to the second end of the rod set, and iii) providing an aggregate field comprising an RF field between the rods of the rod set; c) selecting a first selected mass to charge ratio of a first group of ions in the ions; d) determining a first excitement level of a selected characteristic of the aggregate field for the first group of ions; e) adjusting the selected characteristic of the aggregate field to the first excitement level to resonantly excite the first group of ions to mass selectively eject the first group of ions from the rod set past the barrier field; and, f) maintaining the selected characteristic of the aggregate field at the first excitement level during an excitement time interval wherein the excitation time interval is at least 1 millisecond.
Abstract:
A method of analyzing ions is provided having a first ion guide with first and second ends and introducing a first group of ions and a second group of ions of opposite polarity into the first ion guide, and applying an RF voltage potential to the first ion guide for confining the first and second groups of ions radially within the first ion guide. A first trapping barrier is provided to the first end of the first ion guide for trapping the first group of ions within the first ion guide and a second trapping barrier is provided to the second end of the first ion guide for trapping the second group of ions within the first ion guide and an axial field is provided for pushing the first group of ions toward the first trapping barrier and pushing the second group of ions toward the second trapping barrier.
Abstract:
A multi-device interface for use in mass spectrometry for interfacing one or more ion sources to one or more downstream devices. The multi-device interface comprises three or more multipole rod sets configured as either an input rod set or an output rod set depending on potentials applied to the multipole rod sets. The multipole rod sets configured as an input rod set are connectable to the one or more ion sources for receiving generated ions therefrom and sending the ions to at least one multipole rod set configured as an output multipole rod set. The output multipole rod sets are connectable to a downstream device for sending the generated ions thereto. At least two of the multipole rod sets are configured as input rod sets or at least two of the multipole rod sets are configured as output rod sets.