摘要:
A method for beam therapy is provided. The method includes receiving first data indicating a plurality of target volumes within a target region inside a subject for particle beam therapy relative to a particle beam outlet on a gantry for directing a particle beam from a particle beam source. The method further includes moving automatically, one or more energy modulator components to reduce an energy of the particle beam and deliver the particle beam to the target region such that a Bragg Peak is delivered to at least one target volume of the plurality of target volumes. The method further includes repeating the moving automatically as the particle beam source rotates with the gantry around the subject, without changing the energy of the particle beam at the particle beam outlet, until every target volume is subjected to a Bragg Peak.
摘要:
A method and apparatus for irradiation therapy using voxel based function measurements of organs-at-risk (OAR). The method includes determining size and location of each voxel of a plurality of voxels in a reference frame of a radiation device. The method further includes obtaining measurements that relate to utility of tissue type at each voxel. The method further includes determining a subset of the voxels that enclose an organ-at-risk (OAR) volume. The method further includes determining a value of a utility measure fj at each voxel of the subset based on a corresponding value of the measurements. The method further includes determining a series of beam shapes and intensities which minimize a value of an objective function that is based on a computed dose delivered to an OAR voxel multiplied by the utility measure fj for that voxel summed over all voxels.
摘要:
A novel approach to generating radiation treatment plans through a nested partitions framework provides an optimization of radiation delivery. The nested partitions approach couples beam angle selection and dose optimization to solve treatment planning problems. An optimal beam angle selection is provided to best treat tumors, while minimizing exposure to the surrounding healthy tissues.
摘要:
A novel approach to generating radiation treatment plans through a nested partitions framework provides an optimization of radiation delivery. The nested partitions approach couples beam angle selection and dose optimization to solve treatment planning problems. An optimal beam angle selection is provided to best treat tumors, while minimizing exposure to the surrounding healthy tissues.
摘要:
A method and apparatus is presented for optimizing a treatment plan for irradiation therapy. The method includes determining voxels in a reference frame of a radiation source that rotates at an angular rate of change and emits a beam at a plurality of angles. The beam has a beam intensity and a cross sectional shape based on an aperture of a collimator at each angle. The method includes determining an initial aperture value at each angle and minimizing a single objective function subject to a constraint on an aperture rate of change to determine an aperture and beam intensity at each angle. The method also includes delivering a beam of radiation with controlled intensity at each angle based on the beam intensity and aperture and turning the beam of radiation off at an intervening angle not included in the plurality of angles.
摘要:
A method and apparatus for irradiation therapy using voxel based function measurements of organs-at-risk (OAR). The method includes determining size and location of each voxel of a plurality of voxels in a reference frame of a radiation device. The method further includes obtaining measurements that relate to utility of tissue type at each voxel. The method further includes determining a subset of the voxels that enclose an organ-at-risk (OAR) volume. The method further includes determining a value of a utility measure ƒj at each voxel of the subset based on a corresponding value of the measurements. The method further includes determining a series of beam shapes and intensities which minimize a value of an objective function that is based on a computed dose delivered to an OAR voxel multiplied by the utility measure ƒj for that voxel summed over all voxels.
摘要:
A method and apparatus is presented for optimizing a treatment plan for irradiation therapy. The method includes defining a single objective function based on a plurality of objective functions that are each associated with a plurality of tissue types within a subject, upper and lower bounds for each objective function and a plurality of apertures. The method also includes determining a radiation dose delivered to voxels of each tissue type based on minimizing the single objective function based on the plurality of apertures with initial values at each angle. The method also includes delivering a beam of radiation with controlled intensity and beam cross-sectional shape at each angle based on the plurality of apertures.
摘要:
Techniques for improving treatment delivered to a target site in a patient include delivering a treatment from a treatment delivery device to a target site in a patient supported by a patient support structure. During the delivery of treatment, a state of the patient is measured to produce real-time measurement data. Measuring the state is non-invasive; and the measured state is a correlated surrogate for position of the target site. Compensating movement data is determined based on the real-time measurement data to cause the target site to maintain a particular spatial relationship with the treatment delivery device. Either the treatment delivery device, or the support structure, or both, are moved based on the compensating movement data. When the delivery device alone is moved, the correlation between measured state and target site is based on partial least squares applied to pre-treatment measurements of both.
摘要:
A method and apparatus for irradiation therapy using voxel based function measurements of organs-at-risk (OAR). The method includes determining size and location of each voxel of a plurality of voxels in a reference frame of a radiation device. The method further includes obtaining measurements that relate to utility of tissue type at each voxel. The method further includes determining a subset of the voxels that enclose an organ-at-risk (OAR) volume. The method further includes determining a value of a utility measure fj at each voxel of the subset based on a corresponding value of the measurements. The method further includes determining a series of beam shapes and intensities which minimize a value of an objective function that is based on a computed dose delivered to an OAR voxel multiplied by the utility measure fj for that voxel summed over all voxels.