Abstract:
An image sensor for reducing crosstalk includes anti-reflection films which are formed between a plurality of metal wire lines of the lowest metal wiring layer and a semiconductor substrate and between one of the metal wiring layers and another metal wiring layer. The image sensor having the anti-reflection films according to the present invention can reduce color crosstalk and noises in comparison with a conventional image sensor by using the anti-reflection films formed above the surroundings of the photodiodes.
Abstract:
An image sensor using a back-illuminated photodiode and a manufacturing method thereof are provided. According to the present invention, since a surface of the back-illuminated photodiode can be stably treated, the back-illuminated photodiode can be formed to have a low dark current, a constant sensitivity of blue light for all photodiodes, and high sensitivity. In addition, it is possible to manufacture an image sensor with high density by employing a three dimensional structure in which a photodiode and a logic circuit are separately formed on different substrates.
Abstract:
An image sensor using a back-illuminated photodiode and a manufacturing method thereof are provided. According to the present invention, since a surface of the back-illuminated photodiode can be stably treated, the back-illuminated photodiode can be formed to have a low dark current, a constant sensitivity of blue light for all photodiodes, and high sensitivity. In addition, it is possible to manufacture an image sensor with high density by employing a three dimensional structure in which a photodiode and a logic circuit are separately formed on different substrates.
Abstract:
A CMOS stereo camera for obtaining a three-dimensional image, in which two CMOS image sensors having the same characteristics are disposed on a single semiconductor substrate, is provided. The CMOS image sensors have image planes which are located on the same plane by disposing the two CMOS image sensors on the same semiconductor substrate. A digital signal processor (DSP) for processing a three-dimensional image is disposed between the CMOS image sensors. Optical axes of the CMOS image sensors are parallel with each other and orthogonal to the image planes. Since optical devices formed on the CMOS image sensors can be manufactured through the same processes, distortion of the optical axes between the two CMOS image sensors can be minimized.
Abstract:
Provided is an image sensor and a method of manufacturing the same. The image sensor includes anti-reflection films which are formed between a plurality of metal wire lines of the lowest metal wiring layer and a semiconductor substrate and between one of the metal wiring layers and another metal wiring layer.The image sensor having the anti-reflection films according to the present invention can reduce color crosstalk and noises in comparison with a conventional image sensor by using the anti-reflection films formed above the surroundings of the photodiodes.
Abstract:
An image sensor with color filters capable of minimizing a distance through which incident light reaches photodiodes and flattening the color filters by minimizing step heights among color filters, and a method of manufacturing the same are provided. In the image sensor with the color filters, a metal is doped into an interlayer insulating SiO2 layer opened through a photosensitive film, and the color filters of red, green, and blue are formed in the interlayer insulating SiO2 layer through a heat treatment. In this case, a color filter array can be flattened by removing step heights among color filters generated in an conventional method in which the interlayer insulating SiO2 layer is sequentially coated with the color filters of red, green, and blue so as to form a color filter array. In addition, the distance through which the incident light reaches the photodiodes can be reduced by forming the color filters in the interlayer insulating SiO2 layer, thereby improving the sensitivity of the image sensor.
Abstract:
A back side illumination image sensor reduced in chip size has a capacitor disposed in a vertical upper portion of a pixel region in the back side illumination image sensor in which light is illuminated from a back side of a subscriber, thereby reducing a chip size, and a method for manufacturing the back side illumination image sensor. The capacitor of the back side illumination image sensor reduced in chip size is formed in the vertical upper portion of the pixel region, not in the outside of a pixel region, so that the outside area of the pixel region for forming the capacitor is not required, thereby reducing a chip size.
Abstract:
A back side illumination image sensor reduced in chip size has a capacitor disposed in a vertical upper portion of a pixel region in the back side illumination image sensor in which light is illuminated from a back side of a subscriber, thereby reducing a chip size, and a method for manufacturing the back side illumination image sensor. The capacitor of the back side illumination image sensor reduced in chip size is formed in the vertical upper portion of the pixel region, not in the outside of a pixel region, so that the outside area of the pixel region for forming the capacitor is not required, thereby reducing a chip size.
Abstract:
A method for forming a pad in a wafer with a three-dimensional stacking structure is disclosed. The method includes bonding a device wafer that includes an Si substrate and a handling wafer, thinning a back side of the Si substrate, depositing an anti-reflective layer on the thinned back side of the Si substrate, depositing a back side dielectric layer on the anti-reflective layer, forming vias that pass through the anti-reflective layer and the back side dielectric layer and contact back sides of super contacts which are formed on the Si substrate, and forming a pad on the back side dielectric layer such that the pad is electrically connected to the vias.