摘要:
Methods of manufacturing vertical semiconductor devices may include forming a mold structure including sacrificial layers and insulating interlayers with a first opening formed therethrough. The sacrificial layers and the insulating interlayers may be stacked repeatedly and alternately on a substrate. The first opening may expose the substrate. Blocking layers may be formed by oxidizing portions of the sacrificial layers exposed by the first opening. A first semiconductor layer pattern, a charge trapping layer pattern and a tunnel insulation layer pattern, respectively, may be formed on the sidewall of the first opening. A second semiconductor layer may be formed on the first polysilicon layer pattern and the bottom of the first opening. The sacrificial layers and the insulating interlayers may be partially removed to form a second opening. The sacrificial layers may be removed to form grooves between the insulating interlayers. Control gate electrodes may be formed in the grooves.
摘要:
Methods of manufacturing vertical semiconductor devices may include forming a mold structure including sacrificial layers and insulating interlayers with a first opening formed therethrough. The sacrificial layers and the insulating interlayers may be stacked repeatedly and alternately on a substrate. The first opening may expose the substrate. Blocking layers may be formed by oxidizing portions of the sacrificial layers exposed by the first opening. A first semiconductor layer pattern, a charge trapping layer pattern and a tunnel insulation layer pattern, respectively, may be formed on the sidewall of the first opening. A second semiconductor layer may be formed on the first polysilicon layer pattern and the bottom of the first opening. The sacrificial layers and the insulating interlayers may be partially removed to form a second opening. The sacrificial layers may be removed to form grooves between the insulating interlayers. Control gate electrodes may be formed in the grooves.
摘要:
A method of forming a metal pattern is provided. In the method, a first titanium layer, a copper layer and a second titanium layer are sequentially formed on a substrate. A photo pattern is formed on the second titanium layer. The first titanium layer, the copper layer and the second titanium layer are patterned using the photo pattern to form a first titanium pattern, a copper pattern formed on the first titanium pattern and a second titanium pattern formed on the copper pattern. Therefore, a fine metal pattern may be formed.
摘要:
A non-volatile memory device may include a semiconductor substrate including an active region at a surface thereof, a first memory cell string on the active region, and a second memory cell string on the active region. The first memory cell string may include a first plurality of word lines crossing the active region between a first ground select line and a first string select line, and about a same first spacing may be provided between adjacent ones of the first plurality of word lines. The second memory cell string may include a second plurality of word lines crossing the active region between a second ground select line and a second string select line, and about the same first spacing may be provided between adjacent ones of the second plurality of word lines. Related methods are also discussed.
摘要:
A non-volatile memory device may include a semiconductor substrate including an active region at a surface thereof, a first memory cell string on the active region, and a second memory cell string on the active region. The first memory cell string may include a first plurality of word lines crossing the active region between a first ground select line and a first string select line, and about a same first spacing may be provided between adjacent ones of the first plurality of word lines. The second memory cell string may include a second plurality of word lines crossing the active region between a second ground select line and a second string select line, and about the same first spacing may be provided between adjacent ones of the second plurality of word lines. Related methods are also discussed.
摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
An integrated circuit includes flash memory cells, and peripheral circuitry including low voltage transistors (LVT) and high voltage transistors (HVT). The integrated circuit includes a tunnel barrier layer comprising SiON, SiN or other high-k material. The tunnel barrier layer may comprise a part of the gate dielectric of the HVTs. The tunnel barrier layer may constitute the entire gate dielectric of the HVTs. The corresponding tunnel barrier layer may be formed between or upon shallow trench isolation (STIs). Therefore, the manufacturing efficiency of a driver chip IC may be increased.
摘要:
A gate electrode line which extends in a second direction crossing a first direction on a substrate including an active region which is defined by a device isolation layer and extends in the first direction and a charge trap layer disposed between the active region and the gate electrode line, wherein a bottom surface of the gate electrode line disposed on the device isolation layer is lower than a top surface of the charge trap layer disposed on the active region and higher than a top surface of the active region.
摘要:
Non-volatile memory devices and methods for forming the same are provided. A device isolation layer may be formed on the semiconductor substrate to define an active region. A tunneling insulation pattern, a charge storage pattern, and a blocking insulation pattern may be disposed on the active region. A gate electrode may be disposed on the blocking insulation pattern. The charge storage pattern may be arranged in a matrix and a lower surface thereof is higher than an upper surface of the device isolation layer.
摘要:
A method of forming self-aligned contact holes in an oxide layer to expose a semiconductor substrate between adjacent gate lines. The gate lines are formed such that a spacing between adjacent gate lines in the storage node contact region is equal to or greater than a spacing between adjacent gate lines in the bit line contact region. An insulating layer is deposited on the gate line to fill spaces between the gate lines. Self-aligned contact holes are formed in the insulating layer, using a photolithographic process. As a result, storage node contact hole not-opening phenomenon and bit line contact shoulder over-etching phenomenon can be avoided.