Abstract:
An automotive air conditioning system comprising: an air cooling circuit including a compressor, a condenser, an expansion valve and an evaporator, fluidically connected to be flowed, during operation, by a heat transfer fluid, and a blower fan associated with the evaporator and operable to generate an airflow through the evaporator; an air heating circuit including a liquid/air heater configured to be flowed, during operation, by a heat transfer fluid and arranged close to the evaporator to be flowed also by the airflow generated by the blower fan associated with the evaporator, and a flow rate regulation solenoid valve arranged to regulate the flow rate of the heat transfer fluid through the heater; and an electronic control unit configured to receive a measured evaporator air temperature and a set cabin air temperature and to switch an operating condition of the compressor when the measured evaporator air temperature exhibits a given relation with at least one on/off threshold temperature computed, in at least certain operating conditions, based on the set cabin air temperature.
Abstract:
An automotive electronic control system for a motor vehicle is provided. The automotive electronic control system is designed to cause the motor vehicle to enter a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on received quantities indicative of operative conditions of the motor vehicle, occurrence of a driver-performable action indicative of the will of the driver to enter a freewheel running condition with internal combustion engine off and occurrence at or within a given time from the occurrence of the driver-performable action and the maintaining for a given time of specific predetermined entry conditions. The automotive electronic control system is further designed to cause the motor vehicle to leave a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on the received quantities, occurrence of at least one of specific predetermined exit conditions.
Abstract:
An automotive air conditioning system comprising: an air cooling circuit including a compressor, a condenser, an expansion valve and an evaporator; an air heating circuit, including a flow rate regulation solenoid valve arranged to regulate the flow rate of a heat transfer fluid through the heater; and an electronic control unit. The electronic control unit is configured to receive a measured evaporator air temperature and a set cabin air temperature and to switch the operating condition of the compressor when the measured evaporator air temperature is higher or lower than at least one on/off threshold temperature computed based on the set cabin air temperature.
Abstract:
An automotive electronic control system for a motor vehicle is provided. The automotive electronic control system is designed to cause the motor vehicle to enter a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on received quantities indicative of operative conditions of the motor vehicle, occurrence of a driver-performable action indicative of the will of the driver to enter a freewheel running condition with internal combustion engine off and occurrence at or within a given time from the occurrence of the driver-performable action and the maintaining for a given time of specific predetermined entry conditions. The automotive electronic control system is further designed to cause the motor vehicle to leave a freewheel running condition with internal combustion engine off if the automotive electronic control system determines, based on the received quantities, occurrence of at least one of specific predetermined exit conditions.
Abstract:
Automotive electrical system comprising an electronically-controllable alternator, a solar panel, and an electronic control unit configured to control electrical power generation in the automotive electrical system by determining whether to individually or jointly exploit electrical power supplied by the solar panel and the alternator; if it is determined to exploit electrical power supplied by the solar panel only, controlling the alternator to cause it to bring the automotive electrical system to operate in an operating point where the solar panel supplies the maximum deliverable electrical power; and if it is determined to exploit electrical power jointly supplied by the solar panel and the alternator, controlling the alternator to cause it to bring the automotive electrical system to operate in an operating point where the solar panel and the alternator jointly supply an overall electrical power that depends on fuel consumption.