摘要:
A computer-implemented method for determining the refractive power of an intraocular lens includes providing a physical model for determining refractive power and training a machine learning system with clinical ophthalmological training data and associated desired results to form a learning model for determining the refractive power. A loss function for training includes: a first component taking into account clinical ophthalmological training data and associated and desired results and a second component taking into account limitations of the physical model wherein a loss function component value is greater the further a predicted value of the refractive power during the training is from results of the physical model with the same clinical ophthalmological training data as input values. Moreover, the method includes providing ophthalmological data of a patient and predicting the refractive power of the intraocular lens to be used by means of the trained machine learning system.
摘要:
An optical system for fluorescence observation comprises optics including an ocular 17, a camera 55, a display 69, a light source 71, an illumination light filter 84, an observation light filter 57 and a controller 35. The observation filter has multiple transmitting regions which allows light which was generated by a fluorescence to traverse for observation. The transmitting ranges are divided by blocking ranges. At the wavelength ranges at which the observation filter has a transmitting region the illumination filter has a blocking region and the other way round. The multiple transmitting regions of the illumination filter enable an improved color impression under normal light observation.The controller is configured to process a fluorescent light image obtained by the camera by identifying a contiguous fluorescent region in the fluorescent light image, generating an image including a representation of the boundary of the contiguous fluorescent region, and supplying the generated image to the display.
摘要:
An ophthalmologic system comprising and eye tracker and an OCT system. A method of operating the ophthalmologic system comprises: providing data representing a placement of a first B-scan performed on an eye relative to the eye; performing a measurement on the eye using the eye tracker; determining a placement of the eye relative to the ophthalmologic system based on the measurement using the eye tracker; placing the eye relative to a reference placement of the OCT system based on the provided data and the determined placement; performing A-scans on the eye at at least three A-scan positions; determining a placement of a second B-scan relative to the OCT system based on at least one of the at least three A-scans and the provided data such that the second B-scan and the first B-scan have a substantially same placement relative to the eye; and generating a representation of the second B-scan.
摘要:
An eye surgery system 1 comprises microscopy optics 3 and an OCT device 5 to generate a light-optical image and an OCT image of an eye fundus 11, a controller 29 and a visualization system 13, 41, 83. The controller comprises a data interface 97 for receiving a preoperative OCT image and may control the visualization system to display a representation of the received preoperative OCT image. The controller may control the OCT device 5 to record an intraoperative OCT image and may control the visualization system to display a representation of the recorded intraoperative OCT image. The controller may adjust a magnification of the representation of the intraoperative OCT image and/or a magnification of the representation of the preoperative OCT image so that the magnifications of the representation of the intraoperative OCT image and the magnification of the representation of the preoperative OCT image are equal.
摘要:
An eye surgery microscope 1 having an illumination beam path 9 for imaging a portion of an eye 3 of a patient and a measurement beam path 25 for measuring an ametropia of the eye. The microscope comprises an objective lens 11 having an objective plane 13 in which the eye of the patient is disposable; at least one ocular 17 or a camera 19 for generating and detecting an image of the object plane, respectively; a measurement light source for generating a measurement light beam 29; a measurement module 41 having a light detector; optics traversed by the measurement beam path for directing the measurement light beam onto the retina 7 of the eye of the patient and for providing measurement light 39 reflected at the retina to the measurement module; and a controller; wherein the measurement module and the controller are configured to determine a position of an image of the retina generated by the optics along the measurement beam path and to output a measurement value representing the ametropia of the eye of the patient.
摘要:
An ophthalmology microscopy system for observing fluorescence comprises an imaging system and an illumination system. The imaging system provides at least one optical imaging path producing a magnified multi-dimensional image of an object disposable in a focal plane of the imaging system, and comprises at least one optical observation filter. The illumination system provides an illumination beam path intersecting the focal plane of the imaging system at a variable angle of less than 90°. The microscopy system comprises first and second operating states. In the first operating state, radiation passing through the illumination beam path has at least in a section along the illumination beam path a spectrum free of a pass band of the observation filter. In the second operating state, radiation passing through the illumination beam path has a spectrum having a bandwidth of at least 200 nm in a range from 380 nm to 780 nm.
摘要:
The invention relates to a method for operating an augmented reality observation system in a surgical application, wherein a viewing direction of a user is registered by means of a viewing direction sensor system of an AR observation apparatus, wherein the registered viewing direction is evaluated by means of a control device, and wherein at least one property of at least one controllable light source in the environment is altered by means of the control device by means of a control signal on the basis of the registered viewing direction. Further, the invention relates to an augmented reality observation system for a surgical application.
摘要:
A surgical instrument system for ophthalmic surgery in an eye is provided, comprising: an OCT apparatus including an interferometer; an optical fiber coupled to the OCT apparatus and extending a probe arm of the interferometer; a hand tool comprising: a hand piece, a tube extending away from the hand piece and comprising a distal end portion having a longitudinal axis, wherein a distal portion of the optical fiber is received within the tube; a beam emitter coupled to a tip end of the optical fiber and configured to emit an OCT measuring beam into an emission direction; and an actuator configured to change the emission direction of the OCT measuring beam relative to a tip end of the distal end portion.
摘要:
Imaging systems are provided allowing examination of different object regions spaced apart in a depth direction by visual microscopy and by optical coherence tomography. An axial field of view and a lateral resolution is varied depending on which object region is examined by the imaging system. The proposed imaging systems are in particular applicable for thorough examination of the human eye.
摘要:
Disclosed is a microscope system for imaging an object within an eye, wherein the object is a phase object. The microscope system includes imaging optics for generating images of an object plane of the imaging optics in an image plane of the imaging optics by using imaging light. The object plane is optically conjugate to the image plane. The microscope system is configured to store focus shift data representing a focus shift. The focus shift is generated by a different effect on the imaging light generated by phase objects as compared to amplitude objects. The microscope system is configured to image the object depending on the focus shift data.