摘要:
A method is provided for forming a gate contact for a compound semiconductor device. The gate contact is formed from a gate contact portion and a top or wing contact portion. The method allows for the tunablity of the size of the wing contact portion, while retaining the size of the gate contact portion based on a desired operational frequency. This is accomplished by providing for one or more additional conductive material processes on the wing contact portion to increase the cross-sectional area of the wing contact portion reducing the gate resistance, while maintaing the length of the gate contact portion to maintain the operating frequency of the device.
摘要:
A method is provided for forming a gate contact for a compound semiconductor device. The gate contact is formed from a gate contact portion and a top or wing contact portion. The method allows for the tunablity of the size of the wing contact portion, while retaining the size of the gate contact portion based on a desired operational frequency. This is accomplished by providing for one or more additional conductive material processes on the wing contact portion to increase the cross-sectional area of the wing contact portion reducing the gate resistance, while maintaing the length of the gate contact portion to maintain the operating frequency of the device.
摘要:
A method of fabricating a T-gate HEMT with a club extension comprising the steps of: providing a substrate; providing a bi-layer resist on the substrate; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to a T-gate opening; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to the shape of the club extension wherein the area corresponding to the club extension is approximately 1 micron to an ohmic source side of a T-gate and approximately 0.5 microns forward from a front of the T-gate; developing out the bi-layer resist in the exposed area that corresponds to the T-gate opening; developing out the bi-layer resist in the exposed area that corresponds to the club extension; and forming the T-gate and club extension through a metallization process.
摘要:
A method of fabricating a T-gate HEMT with a club extension comprising the steps of: providing a substrate; providing a bi-layer resist on the substrate; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to a T-gate opening; exposing an area of the bi-layer resist to electron beam lithography where the area corresponds to the shape of the club extension wherein the area corresponding to the club extension is approximately 1 micron to an ohmic source side of a T-gate and approximately 0.5 microns forward from a front of the T-gate; developing out the bi-layer resist in the exposed area that corresponds to the T-gate opening; developing out the bi-layer resist in the exposed area that corresponds to the club extension; and forming the T-gate and club extension through a metallization process.
摘要:
A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.
摘要:
A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.
摘要:
A method and apparatus 10 for detecting the height of non-flat and transparent substrates using one or more reflectors 30 patterned on the surface of the substrate 40 and adjusting the position of the substrate in its holder based on measurement of the height of the reflectors in comparison to a calibration marker 60 on the holder and using appropriate spacers 50 with appropriate thickness to adjust the placement of the substrate at various locations to place the greatest portion of the substrate in an optimal focal range of the lithography system.
摘要:
A nitride-based FET device that provides reduced electron trapping and gate current leakage. The device includes a relatively thick passivation layer to reduce traps caused by device processing and a thin passivation layer below the gate terminal to reduce gate current leakage. The device includes semiconductor device layers deposited on a substrate. A plurality of passivation layers are deposited on the semiconductor device layers, where at least two of the layers are made of a different dielectric material to provide an etch stop. One or more of the passivation layers can be removed using the interfaces between the layers as an etch stop so that the distance between the gate terminal and the semiconductor device layers can be tightly controlled, where the distance can be made very thin to increase device performance and reduce gate current leakage.
摘要:
A semiconductor device is fabricated to include source and drain contacts including an ohmic metal sunken into the barrier layer and a portion of the channel layer; a protective dielectric layer disposed between the source and drain contacts on the barrier layer; a metallization layer disposed in drain and source ohmic vias between the source contact and the protective dielectric layer and between the protective dielectric layer and the drain contact; and a metal T-gate disposed above the barrier layer including a field mitigating plate disposed on a side portion of a stem of the metal T-gate.
摘要:
A nitride-based FET device that provides reduced electron trapping and gate current leakage. The device includes a relatively thick passivation layer to reduce traps caused by device processing and a thin passivation layer below the gate terminal to reduce gate current leakage. The device includes semiconductor device layers deposited on a substrate. A plurality of passivation layers are deposited on the semiconductor device layers, where at least two of the layers are made of a different dielectric material to provide an etch stop. One or more of the passivation layers can be removed using the interfaces between the layers as an etch stop so that the distance between the gate terminal and the semiconductor device layers can be tightly controlled, where the distance can be made very thin to increase device performance and reduce gate current leakage.